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Dual network analysis of transcriptome data for discovery of
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The drug therapy for non-small cell lung cancer (NSCLC) have always been issues of poisonous side effect, acquired drug resistance
and narrow applicable population. In this study, we built a novel network analysis method (difference- correlation- enrichment-
causality- node), which was based on the difference analysis, Spearman correlation network analysis, biological function analysis
and Bayesian causality network analysis to discover new therapeutic target of NSCLC in the sequencing data of BEAS-2B and 7
NSCLC cell lines. Our results showed that, as a proteasome subunit coding gene in the central of cell cycle network, PSMD2 was
associated with prognosis and was an independent prognostic factor for NSCLC patients. Knockout of PSMD2 inhibited the
proliferation of NSCLC cells by inducing cell cycle arrest, and exhibited marked increase of cell cycle blocking protein p21, p27 and
decrease of cell cycle driven protein CDK4, CDK6, CCND1 and CCNE1. IPA and molecular docking suggested bortezomib has
stronger affinity to PSMD2 compared with reported targets PSMB1 and PSMB5. In vitro and In vivo experiments demonstrated the
inhibitory effect of bortezomib in NSCLC with different driven mutations or with tyrosine kinase inhibitors resistance. Taken
together, bortezomib could target PSMD2, PSMB1 and PSMB5 to inhibit the proteasome degradation of cell cycle check points, to
block cell proliferation of NSCLC, which was potential optional drug for NSCLC patients.
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INTRODUCTION
With the development of clinical diagnosis and treatment, the
5-year postoperative survival rate of early NSCLC patients has
been significantly improved [1]. Unfortunately, there are still a
large number of NSCLC patients who were in the advanced stage,
and needed adjuvant drug treatment to improve the prognosis
after operation [2]. The existing clinical drug treatment of NSCLC
mainly includes chemotherapy, small molecule targeted therapy
and immunotherapy [3–8]. Chemotherapy is applicable to a wide
range of patients, but the toxic and side effects are severe and
the individual benefits of patients vary greatly [9]. Small molecule
targeted therapy has strong pertinence and light adverse
reactions because it directly acts on tumor driven signals such
as EGFR, ALK, ROS1 and KRAS. It is the preferred way of drug
treatment for NSCLC at present. However, the prevalence of drug
resistance within 1–2 years after treatment makes it difficult to
benefit for a long time in cancer patients [6]. Immunotherapy is
considered as a new and reliable strategy for the treatment of
NSCLC. Antibodies and small molecule drugs against immune
check points such as PD-1, PD-L1 and CTLA-4 have been approved
for clinical and achieved good therapeutic effects, but the low
response rate limits the further improvement of its efficacy
[10, 11]. Optimizing drug therapy and improving the therapeutic
effect are the urgent problems in the clinical treatment of NSCLC
nowadays.
Individualized precise treatment based on tumor pathology, cell

biology and molecular biology has become the main development

direction for clinical NSCLC treatment [12–14]. The establishment of
effective drug efficacy evaluation system can match the optimal
drug treatment for NSCLC patients, improve the treatment
response rate, avoid unnecessary toxic and side effects and delay
the occurrence of drug resistance. At the same time, the discovery
of new targets and the development of new treatment strategies
can also provide more treatment options for NSCLC patients,
meeting the current needs of individualized and accurate treatment
of NSCLC. The previous exploration of NSCLC targets focused on the
structural variation or differential expression at the molecular level
among different tissues or patients, such as the identification of
EGFR mutation, KRAS mutation and ALK fusion in small molecule
targeted therapy [15–17]. As we all know, tumor, as a persistent
malignant tissue, has extremely complex pathological behavior and
molecular regulation. It is the result of the participation of a variety
of cells and the dynamic interaction of a large number of molecules
[18]. It is difficult to find effective targets and tumor characteristics
by simplifying this complex system from the perspective of
molecular structure variation or expression difference.
Network science is regarded as a sharp weapon to analyze

complex systems. The reason is that by abstracting system
components and relationships into nodes and edges, complex
systems can be transformed into mathematical network models.
With the widespread application of omics detection technology in
tumor research, it is easier to obtain the omics data of tumor DNA,
RNA, protein, metabolites and other molecules. On the basis of
considering the structural variation or differential expression,
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introducing correlation or causality network can better fit the
internal characteristics of the complex system of tumor, and it has
become a new path for the exploration of therapeutic targets
[19–22].
In fact, network analysis has been widely used in disease

research. In the enrichment analysis of tumor pathway, we usually
rely on the correlation relationship between genes to annotate the
function of target gene groups [23]. At the same time, network
analysis is also used to describe the molecular features and
dynamic progress of diseases [24, 25]. The network analysis of the
existing tumor omics data is mostly based on the correlation
between molecules. The limited conditions of the correlation
between molecules in the network are weak and the network
swing is large, which is not enough to accurately describe the
internal characteristics of the tumor [26]. However, most physical
and biological processes can be naturally modeled as causality
networks [27]. Bayesian theorem is used to conduct causality
analysis on tumor omics data. The causality molecular network
constructed is more stable and accurate than the correlation
molecular network.
We tried to integrate the existing methods of difference

analysis, correlation analysis, functional enrichment and causality
analysis to construct a new network analysis method of tumor
transcriptome data, so as to discover the effective therapeutic
targets. In this study, we built a new “difference-correlation-
enrichment-causality-node” network construction and node cap-
ture technology process of tumor transcriptome data. Among
them, “difference” refers to differential expression genes or
differential network nodes, “correlation” refers to Pearson or
Spearman correlation coefficient analysis, “enrichment” refers to
functional enrichment analysis and “causality” refers to Bayesian
probability analysis. This network analysis method is different from
the previous network analysis methods. Based on the double test
of correlation and causality, the molecular relationship described
has higher authenticity and reliability. Relies on layer-by-layer
dimensionality reduction and uses module segmentation and
parallel operation, this method overcomes the problems of limited
input data scale and slow operation speed of Bayesian probability
calculation to a certain extent. Further, taking prognosis informa-
tion as dependent variables and nodes as independent variables,
we have accurately screened potential candidate genes by Cox
regression analysis.
In this study, we combined existing difference analysis,

correlation analysis, functional enrichment and causality analysis
to construct a transcriptome network analysis method for
discovering new therapeutic target of NSCLC (Fig. 1A). Prognostic
analysis, pathological examination, drug protein interaction
analysis, molecular cell experiment and in vivo treatment assay
were executed to investigate the function of selected gene and its
potential as a novel therapeutic target of NSCLC.

RESULTS
Proteasome subunit coding genes is located in the central of
cell cycle regulation network
First, the sequencing gene sets of seven NSCLC cell lines and one
normal bronchial epithelial cell line were intersected to obtain an
expression matrix consisting of 9639 common genes and 23 cell
samples (Fig. 1B). Then, batch correction (Fig. S1A–D) and
difference analysis was performed, and 4994 differential expres-
sion genes were obtained (Fig. 1C). Next, correlation network
analysis was carried out in these differential expression genes
(Fig. 1D), then this correlation network was clustered by “MCODE”
algorithm and yielded ten functional clusters (Fig. S2A–J and Table
S1). After functional enrichment analysis of 10 clusters, we found
that cluster_2 and cluster_9 were mainly enriched in cell cycle
pathway and DNA replication (Fig. 1E). Therefore, we chose these
genes from cluster_2 and cluster_9 for further analysis. We

performed Bayesian causality network analysis on the new
expression matrix of cluster_2 and cluster_9. According to weight
>0.8 and out-degree ≥2, we finally identified 9 candidate genes
(PSMD14, UCHL5, PSMD7, PSMD11, PSMC2, PSMD2, MCM7, MCM4
and ADRM1), which were mainly proteasome subunit coding
genes (Fig. 1F and Table S2).

PSMD2 is an independent prognostic factor for NSCLC
Based on univariate Cox regression analysis, we got 6 candidate
genes (PSMD4, PSMD7, PSMD11, PSMD2, MCM7 and MCM4) were
associated with poor prognosis of NSCLC patients in TCGA
database (Fig. 2A and Fig. S3A). STRING network analysis
identified the correlation network of 6 candidate genes
(Fig. S3B). We found that the PSM family genes were a cluster,
while the MCM family genes were a cluster. Moreover, both PSM
and MCM family genes were associated with tumor progression
[28, 29]. Then, these genes were simplified by lasso regression
(Fig. S3C, D), and finally multivariate Cox regression analysis was
performed with 2 genes (PSMD11 and PSMD2). The result
showed that only PSMD2 could be served as an independent
prognostic factor for NSCLC (P < 0.05, Fig. 2B and Table S3). And
the PPI network analysis found that 269 PSMD2-related proteins
were mainly enriched in cell cycle regulation and proteasome
degradation (Fig. 2C).
Furthermore, we examined the expression of PSMD2 in NSCLC

and its effect on the prognosis of NSCLC patients. Based on the
TCGA-LUAD and our sequencing data, we found that PSMD2 was
significantly higher expressed in NSCLC tissues and cells than in
normal lung tissues and cells (P < 0.001, Fig. 2D, E). Meanwhile,
we constructed three tyrosine kinase inhibitors (TKIs) resistance
NSCLC cell lines (PC9OR and HCC827OR: osimertinib resistance;
H3122LR: lorlatinib resistance) (Fig. S4A–C), and we found that
PSMD2 was highly expressed in 9 types of NSCLC cells (Fig. S4D).
And based on the tissue microarray composed of 98 NSCLC and
82 adjacent cancer samples (Table S4), we found stronger
staining and higher IHC score of PSMD2 in NSCLC tissues than
adjacent tissues (Fig. 2F, G). And the IHC score of PSMD2 was
significantly correlated with tumor stage and lymph node
invasion (P= 0.001, 0.014, Table 1). Further, based on univariate
and multivariate Cox regression analysis of clinical characteristics
in NSCLC patients, we found that tumor stage and lymph node
invasion were independent prognostic factors, but PSMD2 score
was not as limited by the few number of patients (n= 95) in the
NSCLC tissue microarray (P= 0.034, 0.045, 0.053, Table S5). In
addition, based on the prognosis information of 98 NSCLC
patients, we found that the patients with high expression of
PSMD2 (+) had a worse prognosis (P= 0.0015, Fig. 2H and
Fig. S4E). Combining the above results, we identified that PSMD2
was associated with poor prognosis of NSCLC patients and was
an independent prognostic factor for NSCLC.

Knockout of PSMD2 inhibits the proliferation of NSCLC cells
by regulating protein degradation of cell cycle check points
To clarify the role of PSMD2 in the progression of NSCLC, we
knocked out PSMD2 in A549 and H1299 cells, and the result
showed that the knockout efficiency of sg-02 in both cells was
close to 90% (Fig. 3A). Therefore, we chose sg-02 for further
research. After knocked out PSMD2, we found that the growth
rate of A549 and H1299 cells was slowed (P < 0.0001, Fig. 3B, C).
In the G0/G1 phase of cell cycle, compared with the sgNC group,
the mitosis of A549 and H1299 cells in the sg-PSMD2 group was
blocked, and the DNA content was significantly increased
(P < 0.01, Fig. 3D, E). Meanwhile, compared with A549-sgNC
and H1299-sgNC groups, the cell apoptosis in the A549-
sgPSMD2 and H1299-sgPSMD2 groups was significantly
increased (P < 0.01, Fig. 3F).
Finally, we examined the expression of cascade signaling

pathway and cell cycle pathway after knockout PSMD2 in NSCLC
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cells. We found that compared with the A549-sgNC and H1299-
sgNC groups, the phosphorylated protein expression of STAT3,
PI3K-AKT, NF-κB, MAPK-p38 and MAPK-ERK1/2 signaling pathways
in the A549-sgPSMD2 and H1299-sgPSMD2 groups had no
significant changes (Fig. 3G). But in the cell cycle pathway,

compared with the A549-sgNC and H1299-sgNC groups, the
expression of cell cycle blocking protein p21 and p27 had
increased, and the expression of cell cycle driven protein CDK4,
CDK6, CCND1 and CCNE1 had decreased in the A549-sgPSMD2
and H1299-sgPSMD2 groups (Fig. 3H).
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Fig. 1 Identifies candidate target genes of NSCLC by transcriptome network analysis. A Flowchart of transcriptome network analysis.
B Display of seven types of NSCLC cell lines and one type of normal bronchial epithelial cell line. C Volcano showed the differential genes
between NSCLC cell lines and normal bronchial epithelial cell line. P < 0.05. D Correlation network analysis of differential genes. Different
colors represent different clusters, and the node size represents the degree size of genes. E GO term and KEGG pathway analysis of ten
functional clusters. F The causality network of cluster_2 and cluster_9. The red nodes represent proteasome-related genes, the node size
represents the out-degree size of genes, and the arrow direction represents the causal relationship between genes.
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Fig. 2 Identifies PSMD2 as an independent prognostic factor for NSCLC. A Univariate Cox regression analysis to screen the prognosis-
related genes in NSCLC. B Multivariate Cox regression analysis identified gene with independent prognostic value in NSCLC. P < 0.05.
C Functional enrichment of 269 PSMD2-related proteins. D Histogram showed the expression of PSMD2 in BEAS-2B and seven types of
NSCLC cell lines. ****P < 0.0001. E Boxplot showed the expression of PSMD2 between tumor and normal in LUAD from TCGA database.
F IHC staining showed the staining of PSMD2 in NSCLC patient tissues (scale bars = 20 μm). G Histogram showed the IHC scores of PSMD2
in 98 NSCLC patient tissues. H Grouping based on the IHC score of PSMD2, the survival curve was drawn for 98 NSCLC patients. In the IHC
score, 0–3 scores were defined as low expression of PSMD2 in NSCLC tissues, and 4–7 scores were defined as high expression of PSMD2 in
NSCLC tissues.
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Bortezomib shows strong affinity to PSMD2
Since PSMD2 played an important role in the progression of
NSCLC, we entered it into the IPA to analyze its biological
functions and potential targeted drugs. We found that PSMD2 was
matched to a selective inhibitor of 26S proteasome subunits,
bortezomib (Fig. 4A). And most of activated proteins by PSMD2
were related with cell proliferation, which were also consistent
with the result of functional enrichment of PSMD2 (Fig. 2C).
To verify the reliability of this result, we examined whether

bortezomib could bind to PSMD2 by thermal shift assay. We found
that in H1299 and A549 cells, after treated with bortezomib, from
59.2 °C to 62 °C, the expression of PSMD2 was significantly
increased compared to the control group (Fig. 4B). This result
indicated that bortezomib could bind to PSMD2 to form a stable
complex, which was not easily decomposed during heating. We
further refined the temperature gradient and found that in H1299
and A549 cells, the most stable complexes were formed at 60.2 °C
(Fig. S5).
In addition, we performed molecular docking to verify the

binding of bortezomib to PSMD2. As shown in Fig. 4C–F, the
docking scores of the four complexes were all less than
−5 kcal/mol, indicating that the corresponding compounds and
targets have higher binding affinities. Among them, the docking
score of bortezomib-PSMD2 was −8.1 kcal/mol, indicating a
strong affinity as contrasted to reported bortezomib targets
PSMB1 and PSMB5 [30, 31]. Based on these results, we determined
that bortezomib have strong affinity to target PSMD2 in NSCLC.

Bortezomib inhibits the proliferation of NSCLC cells by cell
cycle arrest
First, we detected the IC50 of bortezomib in 9 types of NSCLC cells
(A549: 3.38 nM, H358: 3.12 nM, H1299: 3.1 nM, PC9: 7.45 nM,
PC9OR: 8.72 nM, HCC827: 7.46 nM, HCC827OR: 8.13 nM, H3122:
4.52 nM and H3122LR: 6.59 nM) (Fig. S6A–I). It could be seen that
the IC50 of bortezomib in all 9 types of NSCLC cells were less than
10 nM. Next, we examined the effect of bortezomib on the
proliferation of NSCLC cells. We found that NSCLC cells in the
bortezomib-treated groups had different degrees of rounding,
brightening and decreased cell density compared with the control
groups (Fig. 5A). Meanwhile, compared with the control groups,
the rate of cell growth was slower (P < 0.0001, Fig. 5B), the number

of cell clones was reduced (Fig. 5C), the cell cycle was arrested in
the G0/G1 phase (Fig. 5D, Fig. S7A and Table S6), and the cell
apoptosis was increased (Fig. S7B, C and Table S7) in the
bortezomib-treated groups of 7 types of NSCLC cells.
In order to clarify the role of bortezomib in the NSCLC, we first

detected the functional status of STAT3, PI3K-AKT, NF-κB, MAPK-
p38 and MAPK-ERK1/2 signaling pathways after treated with IC25
and IC50 of bortezomib in the 7 types of NSCLC cells. We found
that there was no apparent activation or inhibition of phosphory-
lated proteins in all 7 types of NSCLC cells, and only a few cells
were inhibited in the same signaling pathways. For example, with
increasing dosage of bortezomib, in A549 and H358 cells, the
expression of p-STAT3 was decreased; in A549, H358 and PC9OR
cells, the expression of p-NF-κB was decreased; in H1299, H358
and H3122 cells, the expression of p-p38 MAPK was decreased;
and in A549, H358, PC9 and PC9OR cells, the expression of
p-ERK1/2 was decreased (Fig. S8A, B). Next, we examined the
effect of bortezomib on cell cycle pathway in NSCLC cells. As
shown in the Fig. 5E, F of 7 types of NSCLC cells, with increasing
dosage of bortezomib, the expressions of cell cycle blocking
protein p16, p21 and p27 were significantly increased, and the
expressions of CDK4, CDK6, CCND1 and CCNE1 involved in G1
phase were significantly decreased. In addition, the expressions of
CDK2 and CCNA2 involved in S phase, CDK1 and CCNB1 involved
in G2/M phase, and p57 involved in the entire cell cycle, had no
significantly changed in 7 types of NSCLC cells (Fig. S8C, D).

Bortezomib inhibits tumor growth of NSCLC in xenograft mice
model
In order to verify the result of bortezomib could inhibit the
proliferation of NSCLC cells, we constructed subcutaneous
xenograft models with 6 types of NSCLC cells (A549, H358, PC9,
PC9OR, H3122 and H3122LR) and treated with bortezomib. Figure
6 shows the anatomical appearance, tumor growth curves and
Ki67 staining in 6 xenograft mice models. Due to the individual
difference of nude mice, some mice failed to form the
subcutaneous tumors eventually. Therefore, we only showed the
nude mice which had the subcutaneous tumor in this study (nude
mice ≥3 in per group). Our results showed that in the bortezomib-
treated groups, the tumor volume were significantly smaller and
the staining intensity of Ki67 was weaker than that in the control
groups (P < 0.05, Fig. 6A–F). At the same time, we stained cell cycle
pathway-related molecules in tumor tissues, and the results
showed that compared with the control groups, the staining of
p21 and p27 was stronger, while the staining of CDK4 and CDK6
was weaker in the bortezomib-treated groups (Fig. S9A, B).
Combined with these results, we believe that by targeting

proteasome coding genes of cell cycle check points, bortezomib
could block the proteasome degradation of p21 and p27, hinder
the formation of cyclin/CDK complex, arrest the cell cycle in G0/G1
phase, and then inhibit the proliferation of NSCLC cells (Fig. 7).

DISCUSSION
TKI treatment has become the preferred choice for NSCLC patients
due to its specificity and mild adverse reactions, but the inevitable
drug resistance significantly limits the long-term survival benefit
of patients [32–35]. Meanwhile, there are still a large number of
patients without sensitive driven mutations who are not available
for TKI treatments [36]. Therefore, it is particularly important to
find new therapeutic targets for NSCLC patients with different
driven mutations or with TKI resistance. In recent years, network
analysis has been widely used in study of various diseases,
especially in the molecular characterization and key molecule
identification of cancers [37–39]. Unlike traditional differential
analysis, network analysis could isolated the potential important
regulators in nodes via molecular network constructing, which is
more efficiency and accurate [40]. In this study, we constructed a

Table 1. The correlation between PSMD2 score and clinical
characteristics in NSCLC patients.

Clinical pathological parameters PSMD2 p values

− +

Gender Male 8 49 0.075

Female 11 27

Age <55 5 21 0.908

≥55 14 55

Tumor_size <5 16 54 0.244

≥5 3 22

Tumor_stage IA–IIB 18 42 0.001*

IIIA–IV 1 34

Lymph_node_examined_count <12 12 50 0.829

≥12 7 26

Lymphatic_invasion <1 14 32 0.014*

≥1 5 44

“−” represents the immunohistochemical score of PSMD2 ≤ 3, “+“

represents the immunohistochemical score of PSMD2 > 3.
*P < 0.05, marked in bold.

Y. Bai et al.

3609

Oncogene (2023) 42:3605 – 3618



transcriptome network to discover new therapeutic target for
NSCLC with different driven mutations or TKI resistance, and
showed proteasome subunit coding genes were located in the
central of cell cycle regulation network, which also suggested

targeting proteasome subunit coding genes might be the
common potential strategy for NSCLC.
Among these proteasome subunit coding genes, PSMD2 was

extremely correlated with the prognosis of NSCLC patients, and

Fig. 3 Knockout of PSMD2 inhibits the progression of NSCLC cells. A The gray value histogram of knockout efficiency of PSMD2 in A549 and
H1299 cells. B, C Cell growth rates of A549-sgPSMD2 and H1299-sgPSMD2 groups after cell culture for 4, 24, 48, 72 and 96 h. ****P < 0.0001.
D, E The percentages of A549-sgPSMD2 and H1299-sgPSMD2 groups at different phase (G0/G1, S and G2/M) of cell cycle were detected by flow
cytometry. **P < 0.01. F Cell apoptosis of A549-sgPSMD2 and H1299-sgPSMD2 groups were detected by flow cytometry. G The phosphorylation
protein expression of STAT3, NF-κB, PI3K-AKT, MAPK-ERK1/2 and MAPK-p38 pathways were detected in A549-sgPSMD2 and H1299-sgPSMD2
groups. H The expression of cell cycle pathway-related molecules was detected in A549-sgPSMD2 and H1299-sgPSMD2 groups.
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could serve as independent prognostic factor. Studies have
reported that PSMD2 is a non-ATP subunit of the 19S proteasome
complex and is highly expressed and correlated with tumor stage
in NSCLC [41]. In our study, we found that NSCLC patients with
high expression of PSMD2 had poor prognosis (Fig. 2H).
Consistent with this result, a prognosis prediction model
consisting of 29 genes including PSMD2 was also associated with
poor prognosis of patients in breast cancer [42]. Further exploring
the role of PSMD2 in the progression of NSCLC, we found that the
growth rate of NSCLC cells was significantly slower after knocked
out PSMD2 (Fig. 3B, C). This result was also consistent with two
previous studies about PSMD2: silencing PSMD2 can reduce the
cell proliferation and induce apoptosis in NSCLC cells [41];

transfection of PSMD2 cDNA can stimulate the growth of
hepatoma cell line SMMC-7721 and mouse embryonic fibroblast
NIH-3T3 [43]. Previous studies have reported that PSMD2 co-
localizes with p21 and p27 in the nucleus, and PSMD2 can
mediate the ubiquitin-proteasome degradation of p21 and p27
under the collaboration with the USP14 [44, 45]. Our results
showed that the protein expression of p21 and p27 was increased
after knocked out PSMD2 (Fig. 3H), suggesting that knockout
PSMD2 could block the ubiquitin-proteasome degradation of p21
and p27 and inhibit the proliferation of NSCLC cells.
As we all known, uncontrolled cyclin-dependent kinase activa-

tion is the cause of malignance, and their function is tightly
regulated by cell cycle inhibitors such as p21 and p27 proteins.

Fig. 4 Bortezomib could target to PSMD2. A The network diagram shows the results of small molecule drug matching, correlation pathway
analysis, protein-protein correlation analysis, protein-RNA correlation analysis and family member analysis of PSMD2. B The combination of
bortezomib and PSMD2 was detected in H1299 and A549 cells with 14 temperature gradients set between 50 °C and 70 °C by thermal shift
assay. Y represents cells were treated with bortezomib for 1 h, and N represents treatment with an equal amount of DMSO for 1 h. C–F Affinity
of bortezomib with PSMD2, PSMB1, PSMB2 and PSMB5 were detected by molecular docking.
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Following anti-mitotic signaling or DNA damage, p21 and p27
bind to the cyclin-CDK complex results in catalytic activity
inhibition and cell cycle arrest [46]. Therefore, targeting the cell
cycle regulation has been regarded as a promising anticancer
strategy. The currently developed CDK4/6 inhibitors, such as

ribociclib, oalbociclib and abemaciclib, are mainly used to treat
ER+/HER2− breast cancer and can significantly prolong the PFS of
patients [47]. In NSCLC, palbociclib and abemaciclib also obtain
positive therapeutic effects [48, 49]. However, the adverse
reactions (such as neutropenia, diarrhea, liver and kidney damage)
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and off-target effects of CDK4/6 inhibitors still limit the clinical
benefits in patients [50]. Our data showed that bortezomib could
also serve as an effective cell cycle inhibitor for NSCLC with
different driven mutations (KRAS G12C/V mutations, EGFR
mutation and ALK fusion) and TKIs resistance (osimertinib
resistance and lorlatinib resistance).
Currently, the reported protein targets of bortezomib are

PSMB1 and PSMB5 [30, 31]. In our research, we identified
bortezomib could target PSMD2 (Fig. 4). Bortezomib, as the first
proteasome inhibitor approved for clinical trial research, was used
in the treatment of multiple myeloma [51, 52], and its role in the
treatment of other hematological malignancies and solid tumors,
such as indolent non Hodgkin’s lymphoma, mantle cell lym-
phoma, prostate cancer and lung cancer [53–55]. In this study, we
demonstrated that compared with control group, after treated
with bortezomib, the cell cycle was arrested in the G0/G1 phase
(Fig. 5D), the expression of p21and p27 was increased (Fig. 5F),
and the tumor volume in xenograft models was smaller
(Fig. 6A–F). Take the above results together, we implied that
bortezomib could inhibit the proteasome degradation of p21 and
p27 by targeting proteasome subunit PSMD2, PSMB1 and PSMB5,
to induce cell cycle arrest and inhibit the proliferation of NSCLC
cells. However, it has been reported that bortezomib has some
side effects when used alone to treat NSCLC, such as gastro-
intestinal side effects, increased dehydration rate, peripheral
neuropathy and thrombocytopenia, which may be related to a
higher initial dose or average dose density of bortezomib [56].
Therefore, exploring the dosage of bortezomib in vivo and
preventing adverse reactions through combination therapy will be
the key to our further research.
In conclusion, by introducing transcriptome network analysis

into the discovery of NSCLC therapeutic target, we successfully
identified PSMD2, which was significantly correlated with the poor
prognosis of NSCLC patients and could serve as a novel
therapeutic target. Bortezomib could target PSMD2, PSMB1 and
PSMB5 to inhibit the proteasome degradation of cell cycle check
points, to block cell proliferation and tumor growth of NSCLC,
which was potential optional drug for NSCLC patients with
different driven mutations or with TKI resistance.

MATERIALS AND METHODS
Isolation of transcriptome data and tissue microarray
RNA sequencing was performed on NSCLC cell lines, including H3122,
H3122LR (Lorlatinib-resistant), PC9 and PC9OR (Osimertinib-resistant).
Meanwhile, we downloaded the sequence data of A459, H1299, H358
and BEAS-2B (normal lung bronchial epithelial cells) from the GSE72794,
GSE77209 and GSE172222 (http://www.ncbi.nlm.nih.gov/geo) [57]. The
common genes were taken from all sequence data, and finally an
expression matrix consisting of 9639 genes and 23 cell samples was
obtained for subsequent analysis.
A total of 180-spot NSCLC tissue microarray composed of 98 NSCLC and

82 adjacent cancer samples were obtained from Shanghai Outdo Biotech
CO., Ltd. This study was approved by the Ethics Committee of Shanghai
Outdo Biotech CO., Ltd, with the ethics approval number YBM-05-02 and
the informed consent was obtained from all subjects. All patients
underwent surgery between January 2008 and July 2013 and were
followed up for 3–8.5 years. All patients had no special medical history and
did not receive preoperative chemotherapy and radiotherapy. The no

special medical history refers to (within 5 years): no other history of
malignant tumors; no history of pulmonary fibrosis, interstitial pneumonia,
pneumoconiosis, radiation pneumonia, drug-related pneumonia, severe
damage to lung function, and other diseases; no history of infectious
diseases; no history of immune deficiency; no history of organ
transplantation. During subsequent data analysis, 3 NSCLC samples with
incomplete clinical information were removed, and 95 NSCLC samples
remained.

Data preprocessing and difference analysis
For the expression matrix mentioned above, the “removeBatchEffect”
function of the “limma” package [58] was used to remove batch effects.
After batch correction, 25% of genes with low average expression were
removed, and then 25% of genes with large variance were removed [59],
and finally 5421 genes were obtained for further analysis.
The corrected matrix contains 5421 genes and 23 cell samples.

According to NSCLC and normal cell groupings, difference analysis was
performed by the “limma” package. In order to retain all differential genes,
only screened by P < 0.05, regardless of the logFC (fold change)
(logFC = 0).

Correlation network analysis and screening of functional
cluster
We used spearman correlation analysis [60] to calculate the correlation
coefficient matrix based on the differential expression genes. And
according to the correlation coefficient >0.95 and degree >3, we got
1299 genes and 7343 gene pairs.
Then, we screened the functional clusters on the correlation network by

the “MCODE” plugin of Cytoscape (3.7.2) [61, 62]. According to degree
cutoff =2, node score cutoff =0.2, K-Core =2 and score >10, 10 clusters
were obtained. Finally, we plotted this correlation network through
Cytoscape and the biological functions of different clusters were enriched
by “clusterProfiler” R package [63].

Causality network analysis
We used the “bnlearn” R package [64] to perform a Bayesian causality
analysis on the above-selected cluster_2 and cluster_9. The causality
networks of cluster_2 and cluster_9 were drawn by Cytoscape (3.7.2), and
the candidate genes were obtained by weight >0.8 and out-degree ≥2.

Survival analysis
Through univariate and multivariate Cox regression analysis, we identified
PSMD2 was the prognosis-related gene in NSCLC. The “survival” and
“survminer” R packages were used for survival analysis. The Kaplan-Meier
method was used to estimate the survival curve, and the log-rank test was
used to analyze the difference in survival time.

Functional enrichment analysis
Based on the protein–protein interaction (PPI) analysis, we identified 269
PSMD2-related proteins. These proteins were subjected to GO terms
enrichment analysis using “clusterProfiler” R package [63]. Lung adeno-
carcinoma (LUAD) samples of TCGA database were divided into two
groups (high and low) based on the expression of PSMD2, GSEA (http://
software.broadinstitute.org/gsea/index.jsp) [65] was performed between
the two groups.

Thermal shift assay
Experimental procedures for thermal shift assay have been reported [66].
(1) Prepare four culture dishes (10 cm) filled with NSCLC cells, two for the
treatment group and two for the control group. The treatment group was

Fig. 5 Bortezomib inhibits the proliferation of NSCLC cells by cell cycle arrest. A The picture showed the changes in cell morphology and
number of different NSCLC cells treated with bortezomib (scale bar=100 μm). B The line chart showed the cell growth rates of bortezomib-treated
group and control group cells in seven types of NSCLC cells. ****P < 0.0001. C The number of cell clones in the bortezomib-treated group and the
corresponding control group was counted by clone formation experiments. D Histogram showed the percentages of seven types of NSCLC cells in
different phase of cell cycle (G0/G1, S and G2/M) after treated with bortezomib. Bor: bortezomib, *P < 0.05, **P < 0.01. E, F The protein expression of
cell cycle related molecules in A549, H1299, H358, PC9, PC9OR, H3122 and H3122LR cells under different concentrations of bortezomib. The IC50 of
A549 was 3.38 nM and the IC25 was 2.88 nM; the IC50 of H1299 was 3.1 nM and the IC25 was 2.76 nM; the IC50 of H358 was 3.12 nM and the IC25 was
2.72 nM. The IC50 of PC9 was 7.45 nM and the IC25 was 5.83 nM; the IC50 of PC9OR was 8.72 nM and the IC25 was 6.24 nM; the IC50 of H3122 was
4.52 nM and the IC25 was 3.86 nM; and the IC50 of H3122LR was 6.59 nM and the IC25 was 4.75 nM.
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treated with tenfold IC50 of bortezomib, while the control group was
incubated with corresponding amounts of DMSO at 37 °C in a 5% CO2

incubator for 1 h. (2) Discard the supernatant, digest the cells with trypsin
into a 15ml tube, centrifuge 300 × g for 3 min; Discard the supernatant

and resuspend the cell precipitate with pre cooled 5ml PBS solution,
centrifuge 300 × g for 3 min; Discard the supernatant and resuspend the
cell precipitate with 1.5 ml pre cooled PBS containing 1% protease
inhibitor, transfer to a new 2ml EP tube. (3) Take 100 μl of cell suspension

Fig. 6 Bortezomib inhibits tumor growth in mice with NSCLC xenografts. A–F Tumor photographs, growth curves and the staining of Ki67 in
six types of NSCLC xenograft mice (A549, H358, PC9, PC9OR, H3122 and H3122LR) after treated with bortezomib. *P < 0.05, **P < 0.01, ***P < 0.001.
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from each treatment group and control group into a 200 μl PCR tube,
ensuring that every 100 μl contains 3 × 106 cells. Set the temperature
range between 50 °C and 70 °C using a PCR instrument, with 14 types of
temperature wells. Heat the sample for 3 min, then place the PCR tube at
room temperature for 3 min, and then transfer it to liquid nitrogen for
quick freezing. (4) Repeat freeze-thaw twice on the cell suspension using
liquid nitrogen and a 25 °C constant temperature metal bath. After each
thaw, a vortex is required, and finally the cell lysate is placed on ice. (5)
Transfer the cell mixture from all PCR tubes to a new 1.5 ml EP tube,
centrifuge 17,000 × g at 4 °C for 20min, and collect 90 μl of supernatant
into the new 1.5 ml EP tube on ice. (6) BCA protein assay kit (Solarbio,
Beijing, China) detects protein concentration, and then adds 5× loading
buffer to heat in a 100 °C metal bath for 10min for subsequent
experiments.

Molecular docking
The SDF file of bortezomib structure was downloaded from the PubChem
database [67]. The PDB files of the crystal structures of PSMD2 (PDB ID:
5GJQ), PSMB1 (PDB ID: 4R3O), PSMB2 (PDB ID: 4R67) and PSMB5 (PDB ID:
5L5W) were downloaded from the RCSB Protein Data Bank (PDB) database
[68]. Ligands and receptors were pretreated and prepared according to the
tutorial and manual of AutoDock Tools (http://vina.scripps.edu/
manual.html) [69]. Bortezomib docks with the corresponding protein
receptor via AutoDock Vina, and compound-target pairs with docking
fraction less than −5 kcal/mol are considered as binding pairs [70]. The
PLIP platform was used to analyze the binding sites of compound-target
pairs [71]. PyMol was used to visualize the results of AutoDock Vina and
PLIP [72].

Cell culture, reagents, and lentivirus infection
NSCLC cell lines (A549, H1299, H358, H3122, HCC827 and PC9) and normal
lung bronchial epithelial cells BEAS-2B were purchased from Shanghai
Academy of Science (Shanghai, China). H358, A549, H1299, HCC827 and
H3122 cells were maintained in RPMI-1640 medium (Gibco, USA). BEAS-2B
and PC9 were maintained in DMEM medium (Gibco, USA). All media were
supplemented with 1% penicillin and streptomycin (Gibco, USA) and 10%

fetal bovine serum (Gimini, USA). The dose of bortezomib (PS-341) (#S1013,
Selleck Chemicals, Co., Ltd, USA) in NSCLC cells was mentioned below.
Briefly, knockout of PSMD2 was performed using sgPSMD2 (PSMD2-

F:caccgCAAGTATCGGCTAGTGGGCT, R:aaacAGCCCACTAGCCGATACTTGc)
and lentiCRISPRv2 plasmids (Zhang Lab) compared to a negative control
of sgNC encoding a nonspecific 20nt guide RNA. The cells were co-
transfected with lentiCRISPRv2 plasmids with CRISPR/Cas9 sgRNA. Two
days after the transfection, cells were selected by puromycin for 1 week to
obtain stable cell lines.

Cell proliferation assay
Cells in logarithmic growth phase were taken and seeded into 96-well
plates at 3000 cells per well. Five parallel control wells were set for each
group of cells, and 4, 24, 48, 72 and 96 h were set as detection time points.
After adding CCK-8 (CCK-8; Beyotime, Shanghai, China), the 96-well plate
was placed in a constant temperature incubator for 1 h. Finally, use the
microplate spectrophotometer (BioTEk, VT, USA) to detect the OD value at
a wavelength of 450 nm, and calculate the relative cell growth rate at each
time point.

Western blot analysis
NSCLC cells were lysed in RIPA buffer (#R0100, Solarbio, Beijing, China) with
protease and PMSF inhibitor cocktails. Protein concentration was
determined using BCA protein assay kit (#PC0020, Solarbio). An equal
amount of proteins (30 µg) for each sample were loaded on 10% SDS-
polyacrylamide gels and then transferred to PVDF membranes (Merck
Millipore, Cork, IRL). Membranes were subsequently blocked with TBST
containing 5% skim milk at room temperature for 1 h and incubated with
diluted primary antibody at 4 °C overnight. The next day, incubated the
secondary antibody and exposed the bands with ECL luminescent solution
(#PE0010, Solarbio). Primary antibodies used were as follows: Rabbit anti-
PSMD2 (#14748-1-AP, Proteintech, Wuhan, China), Rabbit anti-CDK1
(#19532-1-AP, Proteintech), Rabbit anti-p21 (#10355-1-AP, Proteintech),
Rabbit anti-p27 (#25614-1-AP, Proteintech), Rabbit anti-p16 (#10883-1-AP,
Proteintech), Rabbit anti-p57 (#23317-1-AP, Proteintech), Rabbit anti-
CDK2(#10122-1-AP, Proteintech), Rabbit anti-CDK4 (#11026-1-AP,

Fig. 7 Bortezomib targets to proteasome subunit coding genes to inhibit cell proliferation of NSCLC. Under the synergistic effect of
USP14, knocking out PSMD2 or treating with bortezomib can inhibit the degradation of proteasomes of p21 and p27, reduce the activity of
cyclin/CDK complexes, and block the cell cycle in G0/G1 phase, thereby inhibiting the proliferation of NSCLC.
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Proteintech), Rabbit anti-CDK6 (#14052-1-AP, Proteintech), Rabbit anti-Ki67
(#27309-1-AP, Proteintech), Rabbit anti-p-IκBα (#2859T, Cell Signaling
Technology, Massachusetts, USA), Rabbit anti-IκBα(#4814T, CST), Rabbit
anti-p-NF-κB p65(#8242T, CST), Rabbit anti-NF-κB p65 (#3033T, CST), Rabbit
anti-p-ERK1/2 (#310065, ZEN BIO), Rabbit anti-ERK1/2 (#343830, ZEN BIO),
Rabbit anti-STAT3 (#10253-1-AP, Proteintech), Rabbit anti-p-STAT3 (#9145S,
CST), Rabbit anti-p44/42 MAPK (#4695T, CST), Rabbit anti-p-p44/42 MAPK
(#4370T, CST), Rabbit anti-AKT (#51077-1-AP, Proteintech), Mouse anti-p-
AKT (#66444-1-Ig, Proteintech), Rabbit anti-cyclin D1 (#60186-1-AP,
Proteintech), Rabbit anti-cyclin A2 (#18202-1-AP, Proteintech), Rabbit
anti-cyclin B1 (#55004-1-AP, Proteintech), Rabbit anti-cyclin E1 (#11554-1-
AP, Proteintech), Rabbit anti-PSMB1 (#11749-1-AP, Proteintech), Rabbit
anti-PSMB5 (#19178-1-AP, Proteintech), Mouse anti-GAPDH (#1E6D9,
Proteintech) and Mouse anti-β-actin (#66009-1-Ig, Proteintech).

Colony formation assay
The NSCLC cells were seeded in 6-well plates (500 cells per well) treated
with bortezomib in the next day with culture medium for 2 weeks. The
cells were washed twice with PBS and fixed with 4% paraformaldehyde for
30min followed by 0.1% crystal violet staining for 15min. Afterwards, the
cells were re-washed twice with PBS and imaged by a digital camera.

Cell cycle and apoptosis assays
Cells were harvested when NSCLC cells reached 90% confluence. After
fixation with 70% ethanol at 4 °C overnight, cells were re-washed twice, and
then stained with propidium iodide (PI)/RNase Staining Solution (#C1052,
Beyotime, Shanghai, China) for 30min in the dark. The proportion of cell
cycle phases was detected by flow cytometry (Cytoflex, Beckman, Germany).
For apoptosis assay, cells were treated with Annexin V-FITC Apoptosis

Detection Kit (#C1052, Beyotime) and determined by cell sorting.
Approximately 20,000 cells were collected per experiment and assays
were repeated three times independently.

Immunohistochemistry (IHC) and quantification
Formalin-fixed and paraffin-embedded sections were baked at 65 °C for 4 h,
then deparaffinized, hydrated, and subjected to antigen retrieval. Sections
were incubated with Rabbit anti-PSMD2 (1:200; #14781-1-AP, Proteintech),
Rabbit anti-p21 (1:200; #10355-1-AP, Proteintech), Rabbit anti-p27
(1:200; #25614-1-AP, Proteintech), Rabbit anti-CDK4 (1:200; #11026-1-AP,
Proteintech) and Rabbit anti-CDK6 (1:200; #14052-1-AP, Proteintech)
overnight at 4 °C. Subsequently, these tissue sections were incubated with
horseradish peroxidase-conjugated secondary antibody (1:1000, ZSGB-BIO)
for 5min at 37 °C. Then, sections were stained with DAB+ substrate
chromogen solution (#ZLI-9017, ZSGB-BIO, Beijing, China) for 1min at room
temperature, followed by counterstaining with hematoxylin. Two research-
ers scored the staining results in a blinded fashion independently.
The protein expression was evaluated by both staining intensity and

percentage of staining positive cells based on a semi-quantitative scoring
system [73]. Staining intensity was defined as 0 for negative staining, 1 for
weak staining, 2 for moderate staining and 3 for strong staining. Percentage
of positive cells was quantified as 0 for ≤5% positive cells, 1 for 6–25%, 2 for
26–50%, 3 for 51–75% and 4 for >75%. The sum of the staining intensity and
the percentage of positive cells score was determined as the positive grade
of the slides. A score of 0 represented negative, 1–3 (+) represented weakly
positive, 4-5 (++) represented positive, and 6–7 (+++) represented
strongly positive. In this study, patients were divided into two groups(-/+)
based on the IHC score of PSMD2, with score ≤3 representing the “-”
subgroup and score >3 representing the “+” subgroup.

In vivo experiment
Female nude mice were purchased from GemPharmatech Co., Ltd
(Jiangsu, China) and housed in facilities approved by Animal Care and
Use Committee of West China Hospital, Sichuan University. Nude mice
were housed in an SPF environment for 1 week, and then each mouse
was subcutaneously injected with 100 μl of 5 × 106 NSCLC cells. Tumor
size was measured every 3 days (tumor size = a × b2/2). When the tumor
size had reached 80–120mm3, the mice were randomly divided into two
groups (no blinding). Mice were injected subcutaneously twice a week
(3 weeks) with 0.5 mg/kg bortezomib (#S1013, Selleck Chemicals, Co., Ltd,
USA). Then, all mice were sacrificed on day 45, xenograft tumors were
dissected and its size were measured. Finally, tumor tissues were fixed
with 4% formalin, and the corresponding analysis was performed by
immunohistochemistry.

Data analysis
Statistical analysis of all experimental data was performed using SPSS 22.0
(SPSS Inc, Chicago, IL, USA) and graphical presentation of experimental
results was performed using Graphpad Prism 8.0 (Graphpad Inc, La Jolla,
CA, USA). Semi-quantitative results of all CCK-8 assays and western blot
were analyzed using t-test or Mann–Whitney U test. The Wilcoxon test was
used to compare the expression of PSMD2 in normal lung and tumor
tissues. The chi-square test was used to analyze the correlation between
the IHC score of PSMD2 and the clinical features of NSCLC patients. The
effects of bortezomib on colony formation, cell cycle and apoptosis in
NSCLC cells were analyzed using one-way ANOVA. All data with normal
distribution and homogeneity of variance were expressed as mean ±
standard deviation. All results were considered statistically significant at
P < 0.05 (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

DATA AVAILABILITY
Source data and reagents are available from the corresponding author (Email:
senyi_deng@scu.edu.cn) upon reasonable request.
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