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Checkpoint inhibitor pneumonitis (CIP) is the most common fatal immune-related adverse event; however, its pathophysiology
remains largely unknown. Comprehensively dissecting the key cellular players and molecular pathways associated with CIP
pathobiology is critical for precision diagnosis and develop novel therapy strategy of CIP. Herein, we performed a comprehensive
single-cell transcriptome analysis to dissect the complexity of the immunological response in the bronchoalveolar lavage fluid
(BALF) microenvironment. CIP was characterized by a dramatic accumulation of CXCL13+ T cells and hyperinflammatory CXCL9+
monocytes. T-cell receptor (TCR) analysis revealed that CXCL13+ T cells exhibited hyperexpanded- TCR clonotypes, and pseudotime
analysis revealed a potential differentiation trajectory from naïve to cytotoxic effector status. Monocyte trajectories showed that
LAMP3+ DCs derived from CXCL9+ monocytes possessed the potential to migrate from tumors to the BALF, whereas the
differentiation trajectory to anti-inflammatory macrophages was blocked. Intercellular crosstalk analysis revealed the signaling
pathways such as CXCL9/10/11-CXCR3, FASLG-FAS, and IFNGR1/2-IFNG were activated in CIP+ samples. We also proposed a novel
immune signature with high diagnostic power to distinguish CIP+ from CIP− samples (AUC= 0.755). Our data highlighted key
cellular players, signatures, and interactions involved in CIP pathogenesis.
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INTRODUCTION
Immune-checkpoint inhibitors (ICIs) bind to immune-
checkpoint proteins to relieve tumor-mediated inhibition and
recover T-cell cytotoxic function [1, 2]. ICIs therapy has been
proven to be an effective anti-cancer treatment program for a
wide range of human malignancies [3, 4]; however, ICIs therapy
can cause inflammatory toxicities, also termed immune-related
adverse events (irAEs), and even fatal adverse events (FAEs)
[5–7]. irAEs can affect any human organ system and induce
treatment-limiting toxicities, posing challenges to ICIs use
[8–10]. irAEs usually occur at barrier sites, including the
gastrointestinal (GI) mucosa, liver, skin, and lung [11, 12], and
the FAEs are mainly seen in the respiratory system and are also
termed checkpoint inhibitor-associated pneumonitis (CIP)
[13, 14]. The incidence of CIP is approximately 3–5% according
to clinical trial data [15, 16]; however, the occurrence of CIP can
be higher in real-world settings than previously reported
[17, 18]. A recent meta-analysis revealed that approximately
35% of anti–PD-1/anti–PD-L1 related fatalities are due to CIP
[19]. Therefore, the dynamic assessment of ICIs therapy and
effective monitoring of adverse events are important to reduce
the incidence and mortality of irAEs and facilitate cancer
immunotherapy.

The clinical and pathognomonic radiological features of CIP are
nonspecific [20, 21]. Patients with CIP present with an acute-to-
subacute onset of dyspnea, hypoxemia, and pulmonary infiltrates,
similar to those with acute respiratory distress syndrome [21, 22].
In addition, the current diagnosis of CIP requires the exclusion of
other lung injuries, and fundamental knowledge of CIP pathobiol-
ogy is lacking [23, 24]. Therefore, a comprehensive understanding
of CIP pathobiology and the dissection of key cellular players and
molecular pathways underlying CIP initiation are critical for cancer
immunotherapy, precise diagnosis, and timely prevention of CIP.
Several studies have used flow cytometry and bulk transcrip-

tomic analyses to elucidate the mechanisms underlying CIP [25–27].
However, these studies detected signals at the population level,
limiting their ability to capture cellular and molecular heterogeneity
and impeding precise diagnosis. Single-cell RNA-sequencing
(scRNA-seq) is a powerful technology that widely used to reveal
the heterogeneous cellular and molecular characteristics of various
cells associated with cancer [28, 29] and inflammatory diseases such
as COVID-19 and cancer immunotherapy-induced colitis [30–32].
Herein, we performed scRNA-seq, single-cell T-cell receptor

sequencing (scTCR-seq), flow cytometry, and cytokine expression
analysis of CIP bronchoalveolar lavage fluid (BALF) and compara-
tively analyzed the bronchoalveolar immune landscape across ICI-
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treated non-small cell lung cancer (NSCLC) patients with and
without CIP to examine the complexity of the immunological
responses in the BALF immune microenvironment of NSCLC
patients with CIP.

RESULTS
Global analysis of immune cell populations in BALF of patients
with CIP
We present the first in-depth cellular and molecular analysis of
immune cell populations in the BALF of patients with CIP induced
by ICIs therapy, which enrolled two patient populations from 13
donors: (1) ICI-treated NSCLC patients with CIP (n= 7, CIP+), and
(2) ICI-treated NSCLC patients without CIP (n= 6, CIP−) (Fig. 1A, B).
Our study design allowed us to distinguish the key cellular players,
molecular pathways, and effector programs induced by ICIs
therapy to dissect CIP pathophysiology. All ICI-treated patients
had previously been treated with a PD-1/PD-L1 blockade. In the
CIP+ group, one patient had grade 1 pneumonitis, six had grade 2
events; four patients had cryptogenic organizing pneumonia
(COP) like pneumonitis, two had interstitial pneumonitis, and one
had ground-glass opacities (GGO) (Fig. 1B, Supplementary Tables
S1–3). Three patients (two in the CIP+ Group and one in the CIP−
Group) in this study had received thoracic radiotherapy before ICIs
treatment, and no pneumonitis was found in the radiation field.
The BALF was obtained immediately after the development of CIP
(average, 3.67 days; maximum 8 days) from the newly infiltrated
area (Supplementary Table S1). The patients in the CIP+ cohort
received corticosteroids after bronchoscopy (Supplementary Table
S3). A total of 776,496 high-quality cells passed data quality
control (Supplementary Fig. 1A–E), and 25 cell clusters were
obtained after integrated bioinformatics analysis, including data
integration, normalization, batch effect removal, dimension
reduction, and cluster detection. We identified and annotated 12
main cell types according to the expression of canonical gene
markers (Supplementary Table S4), which comprised epithelium
(SCGB3A1, KRT19), CD8+ T cell (CD3D, CD8A), CD4+ T cell (CD4,
IL7R), natural killer (NK) cell (XCL2, TRDC), plasma B cell (MZB1,
JCHAIN), B cells (CD79A, CD79B), proliferating cell (MKI67, TOP2A),
CD1C dendritic cell (DC) types (CD1C, CLEC9A, LAMP3, IL3RA),
monocyte/macrophage (S100A9, APOE, MARCO), and mast cell
(CPA3) (Fig. 1C, D, Supplementary Fig. 1F). Each cell subtype
contained cells from all the patients, indicating the absence of the
main patient-specific batch effects (Fig. 1E). The scRNA-seq
findings revealed an increase in the frequency of T/NK and
proliferative or cycling cells in the CIP+ group, whereas
monocytes/macrophages were depleted (Fig. 1F), which was
validated by flow cytometry analysis in another patient cohort
(Fig. 1G, CIP+, n= 5; CIP−, n= 4; Supplementary Tables S5 and 6).
These results demonstrate CIP is highly associated with major
changes in the immune microenvironment of BALF.

Characteristics and dynamics of CD8+ T cells in BALF of
patients with CIP
Analysis of transcriptomes for 30 762T/NK cells generated
12 subclusters (Supplementary Fig. 2A–C), and the cytotoxic
effectors GZMK+ CD8, GZMB+ CD8, CXCL13+ CD8, and
proliferative CD8 showed a dramatic increase in the CIP+ group
compared to the CIP− group (Supplementary Fig. 2C, D). Next, we
performed a further detailed clustering of CD8+ T cells and
generated seven subclusters of CD8+ T cell subtypes: ZNF683+
CD8, GZMB+ CD8, GZMK+ CD8, IL7R+ CD8, CXCL13+ CD8, MT1E
+ CD8, and proliferating MKI67+ CD8 (Fig. 2A, B, Supplementary
Table S7). The organization of the CD8+ T cell compartment
showed great differences between CIP− and CIP+ group (Fig. 2C);
GZMB+ CD8, CXCL13+ CD8, and proliferating MKI67+ CD8 were
more frequent in CIP+ samples, whereas naïve IL7R+ CD8 and
resident ZNF683+ CD8 were more enriched in CIP− samples

(Fig. 2D). Flow cytometry analysis confirmed that CIP associated
CD8+ T cell subclusters increased at the protein level (Fig. 2E).
Interestingly, the immune-checkpoint (LAG3, HAVCR2, PDCD1),
immune cell-homing signals (CXCL13, CCL3/4), IFNγ response
(IFNG) and cytotoxic effector (GZMB, PRF1, GNLY) markers were
the top differentially expressed genes (DEGs) in CIP associated
CD8+ T cell subclusters (Fig. 2F, G). Gene set enrichment analysis
(GSEA) of the upregulated genes showed that the differentially
upregulated genes in the CIP associated CD8+ T cell subclusters
compared to other CD8+ T cell subclusters were enriched in
interferon signaling, IFNG, and lung proliferating NK/T cell
pathways, which correlated with T cell effector function (Fig. 2H),
indicating a highly cytotoxic and effective environment for CIP
induced by ICIs. To investigate the origin of the CXCL13+ CD8+ T
cell subcluster, we performed a trajectory analysis and a T-cell
receptor (TCR) clone expansion analysis. The corresponding TCR
sequences revealed that GZMB+ CD8, CXCL13+ CD8 shared
expanded TCR clonotypes with resident ZNF683+ CD8, with the
highest clonality observed in CXCL13+ CD8 cells (Fig. 3A-D, and
Supplementary Fig. 2E), In addition, CIP+ group exhibited more
hyperexpanded TCR clonotypes than CIP− group, although the
trend is not notably (Fig. 3B, and Supplementary Fig. 2F), indicated
that CD8+ T cells undergo clonal expansion following TCR
activation in patients with CIP. Furthermore, the monocle (Fig. 3E)
and slingshot (Fig. 3F) pseudotime trajectory analysis showed a
possible differentiation trajectory from naïve IL7R+ CD8 into
resident ZNF683+ CD8 and then into cytotoxic CD8+ T cell
subsets: CXCL13+ CD8 and GZMB+ CD8 (Fig. 3F, G), which is
consistent with the differentiation trajectory in which ZNF683+
CD8 contributes to cytotoxic CD8+ T cells in colitis induced by ICI
therapy [30]. Pathway analyses revealed upregulation of interferon
(IFN) responses, inflammatory responses, MYC, PI3K-AKT-mTOR,
and TNF pathways along the CD8+ T cell differentiation trajectory
in CIP+ samples compared to CIP− samples (Fig. 3H). Interest-
ingly, the expression of immune-checkpoint (HAVCR2, PDCD1),
immune cell-homing signals (CXCL13), IFNγ response (IFNG,
STAT1) and cytotoxic effector (GZMB, PRF1, NKG7) markers
increased alongside the trajectory (Fig. 3I). Therefore, our results
highlighted the dynamic gene expression and pathway patterns
along trajectories, and clonal expansion of CD8+ T cell subclusters
associated with CIP.

Characteristics and dynamics of CD4+ T cells in BALF with CIP
Sub-clustering of total CD4+ T cells generated six subclusters of
CD4+ T cells (Fig. 4A), annotated as TCF7+ CD4, GZMK+ CD4,
CD40LG+ CD4, IL7R+ CD4, CXCL13+ CD4, and FOXP3+ Treg,
according to the top five DEGs (Fig. 4B, Supplementary Table S8).
Consistent with the results for CD8+ Tcell subclusters, the
proportion of CD4+ T cell subclusters differed dramatically among
samples (Fig. 4C). CD40LG+ CD4+ T cell subcluster was
predominant in the CIP− group, whereas TCF7+ CD4, FOXP3+
Treg, and CXCL13+ CD4 were more frequent in the CIP+ group
(Fig. 4D), and the percentage of CIP associated CD4+ T cell
subclusters was validated by flow cytometry analysis at the
protein level, indicated that GZMB, GZMK, CXCL13, PDCD1(PD1)
was highly expressed in CIP+ samples (Fig. 4E). Furthermore, the
DEGs analysis revealed that the immune-checkpoint genes
(CTLA4, TIGIT, LAG3), immune cell-homing signals genes (CXCL13)
were both upregulated in CIP associated CD4+ T cells subclusters
(Fig. 4F). Also, the cytotoxic effector marker (GZMA, GZMB, PRF1,
GNLY) expressed a high level in CD4+ T cells subclusters of CIP+
group than CIP− group (Fig. 4G). We also observed that CIP
associated CD4+ T cells were enriched in the inflammation
signaling pathways such as IFN, TNF, IL2, and IL6 (Fig. 4H),
indicated a hyper inflammatory status in CIP samples. Further-
more, the TCR sequences showed that CXCL13+ CD4 and
CD40LG+ CD4 had more hyperexpanded TCR clonotypes
(Fig. 5A–C) and CXCL13+ CD4 shared more expanded TCR clonotypes
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Fig. 1 Global analysis of immune cell populations in CIP. A A general workflow of BALF collection and processing of single-cell suspensions
for scRNA+TCR-seq and flow cytometry. B Summary of patient cohorts for scRNA-seq analysis. Unbiased clustering (C) and cell type
annotation (D) of 76,496 high-quality BALF cells. E the proportion of sample contributions per annotated cell type (left) and the percentage of
annotated cell type contributions per sample (right). F Relative contribution of each cell type in distinct pathology samples. P values were
assessed by Student’s t test. G, T/NK, Cycling, Mono/Mac frequencies as determined by flow cytometry (percentage of live CD45+ cells), P
values were assessed by Student’s t test.
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with CD40LG+ CD4 and IL7R+ CD4 (Fig. 5D), indicating that IL7R+
CD4 contributed to differentiate to CD40LG+ CD4 to CXCL13+
CD4 in CIP+ samples, whereas it differentiated to CD40LG+ CD4
but not CXCL13+ CD4 in CIP− samples. Further pseudotime
trajectory analysis confirmed this hypothesis (Fig. 5E, F): naïve

IL7R+ CD4 cells have two differentiation routines, contributing to
CXCL13+ CD4, CD40 LG+ CD4, and Treg cells (Fig. 5E–G),
indicating the phenotypic transition of naïve CD4+ T cells to
effector status may be an important phenomenon in CIP+
samples. Pathway analyses revealed upregulation of IFN
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responses, inflammatory responses, PI3K-AKT-mTOR, MYC, and
TNF pathways along the CD4+ T cell differentiation trajectory in
CIP+ samples compared to CIP− samples (Fig. 5H). Furthermore,
the expression of immune-checkpoint (LAG3), immune cell-
homing signals (CXCL13, CCL4L2), IFNγ response (IFNG), and
cytotoxic effector (GZMB, PRF1, GNLY) markers increased along-
side the cellular differentiation trajectory in CIP+ samples (Fig. 5I).
Therefore, our results highlighted the gene and pathway
expression patterns along trajectories, and clonal expansion of
CD4+ T cell subclusters associated with CIP.

Hyperinflammatory phenotype of myeloid cells expanded in
BALF with CIP
Myeloid cell related molecular characteristics and differentiation
trajectory abnormalities have been associated with COVID-19 and
other diseases [33]. In this study, myeloid cells accounted for over
50% of the total sequenced cells, which were subclassified into
eight cell subtypes and annotated as CPA3+ Mast cell, CLEC9A+
(DC), CD1C+ DC, LAMP3+ DC, IL3RA+ DC, CXCL9+ monocyte,
FCN1+monocyte, SPP1+ and FABP4+macrophage (Fig. 6A–C,
Supplementary Fig. 3A, Supplemental Table S9). The proportion
of these cell subtypes differed notably among patients (Fig. 6B),
and CXCL9+ and SPP1+ monocyte was more frequent in the CIP+
samples than in the CIP− samples, whereas the number of FABP4+
macrophages decreased dramatically in the CIP+ samples (Fig. 6D,
p < 0.05). CXCL9+ monocytes express the proinflammatory-
chemokines IL1B, CCL2/3/4, and CXCL9/10, indicating a hyperin-
flammatory phenotype. The LAMP3+ DCs also showed higher
percentage in the CIP+ samples although the p value was not
statistically significant (p= 0.07), which expressed the DC matura-
tion markers such as LAMP3 and CD83, the lymphocyte recircula-
tion chemokine CCL19, and the migration marker CCR7 (Fig. 6C,
Supplementary Fig. 3A, Supplementary Table S9). GSEA revealed
LAMP3+ DCs exhibited high maturation and migration scores
(Fig. 6E, Supplementary Table S10), indicating the potential of
migration from tissue to BALF and providing information on the
mechanisms of CIP pathogenesis. LAMP3+ DCs also enriched
immune-checkpoint signaling pathways such as 41BB (CD137),
PD1, CTLA4, and effector T cell function-associated pathways such
as TNF and IFNG (Fig. 6E, Supplementary Fig. 3A, B). Furthermore,
the myeloid cell subclusters of CIP+ samples showed higher
expression of IFN pathway genes, such as CXCL9, CXCL10, IFITM2,
and IFIT3, than the myeloid cell subclusters of CIP− samples
(Fig. 6F). GSEA showed that DEGs in the CIP associated myeloid cell
subclusters were enriched in inflammation pathway such as IFN,
IL2, IL6, TNF signaling, and lung fibrosis (Fig. 6G, Supplementary Fig.
3B). These results were validated by the chemokine assay
(Supplementary Fig. 3D, E). The pseduotime trajectory analysis
revealed that the differentiation of hyperinflammatory CXCL9+
monocytes to anti-inflammatory alveolar macrophages was
blocked, whereas LAMP3+ DCs with high migration characteristics
was highly expanded in CIP, which was derived from the
differentiation of CXCL9+ monocytes (Fig. 7A–D, Supplementary
Fig. 4A–C). Furthermore, pathway analyses revealed the upregula-
tion of IFN responses, inflammatory response, and TNFR2, TNFA,
and PD1 pathways along the myeloid differentiation trajectory in

CIP+ samples (Fig. 7E). Gene expression profiling along the
trajectories also identified IFN signaling associated genes such as
CXCL9/10/11, IFITM1, IFNGR1, and TNFRSF1A as important activated
markers (Fig. 7F) to distinguish CIP+ from CIP− samples.

Multilineage intercellular crosstalk and potential therapeutic
targets for CIP
Having defined CIP associated T cell and myeloid cell subpopula-
tions, obvious correlations between the abundance of CXCL9+mo-
nocytes, LAMP3+ DCs and CIP associated T cell subclusters were
found, such as CXCL13+ CD4, CXCL13+ CD8, and GZMB+ CD8
(Fig. 8A, Supplementary Fig. 5). We performed an unbiased ligand-
receptor interaction analysis between these populations to explore
the multilineage intercellular crosstalk associated with CIP patho-
genesis. Numerous ligand-receptor pairs and signaling pathway
networks were detected (Fig. 8B, Supplementary Fig 6A). The CIP+
group exhibited more ligand-receptor pairs than the CIP− group
(Fig. 8C), and CXCL9+ monocytes and LAMP3+ DCs showed close
interaction links with CXCL13+ T cells (Fig. 8B, D). Specifically, the
immune checkpoint inhibitor PD-L1, PD-L2, and TIGIT signaling
pathways and the CD80 signaling pathway networks were
enriched between CXCL9+monocytes, LAMP3+DCs and CXCL13+
T cells (Supplementary Fig. 6B). Furthermore, CXCL9+ monocytes
and LAMP3+ DCs interacted closely with CXCL13+ T and GZMB+
T cells through CXCL9/10/11-CXCR3, FASLG-FAS, IFNG-IFNGR1/
IFNGR2, and TNF-TNFRSF1A ligand-receptor pairs (Fig. 8D).
Previous studies have reported that PD-L1 expression in macro-
phages and DCs may be closely related to ICIs efficacy [34]. In this
study, the CIP+ samples exhibited a stronger interaction between
PD-L1, PD-L2, and TIGIT signaling than the CIP− samples (Fig. 8E),
indicating that the CIP+ group may benefit more from ICIs therapy.
In addition, the CIP associated T cells expressed high levels of the
chemokine receptor genes CXCR4 and CXCR6 (Fig. 8F), with the
myeloid cell ligands CXCL9/10/11 expressed in CIP associated
monocytes and DCs (Fig. 8D, E). The T cell subclusters exhibited
elevated expression levels of effector and cytotoxic genes such as
IFNG, GZMB, GNLY, and PRF1 in CIP+ samples (Figs. 2G, 4G, and 8F),
and CXCL9+ monocytes and LAMP3+ DCs of CIP+ samples
expressed high levels of the receptor genes IFNGR1/2 and
TNFRSF1A/B (Fig. 8E, F). Therefore, we hypothesized that CXCL9+
monocytes and LAMP3+ DCs contributed to CIP pathogenesis by
recruiting effector and cytotoxic T cell through the CXCL9/10/11-
CXCR3 pathway. Furthermore, a panel of T cell and myeloid cell
featured molecules, such as CXCL10, CXCL13 were also elevated in
CIP+ lung tissues [27] than CIP− lung tissues (Fig. 8G), indicating the
potential of BALF makers for screening CIP. We further developed a
CIP signature (CXCL9/10/11/13, CXCR3/6, FASLG, and IFNG), and
found that the CIP signature expressed a high level in CIP+ tissue
samples than CIP− tissue samples (Fig. 8H), and achieved a high
diagnostic power to distinguish CIP+ tissue sample from CIP− tissue
samples (Fig. 8I). Therefore, our unbiased dissection of key ligand-
receptor interactions between CIP associated hyperinflammatory
myeloid cell subclusters and effector T cell subclusters highlights
CXCL, IFN, FAS, and the TNF signaling axis as important regulators
within the BALF microenvironment of patients with CIP, which is also
an important biomarker for the screening of CIP.

Fig. 2 CIP associated CD8+ T Cell with cytotoxic effector programs. A Sub-clustering of CD8+ T cells revealed 7 cell-subclusters. B, Heat
map showing the scaled expression of top 8 differentially expressed genes among eight CD8+ cell-subclusters. C The proportion of sample
contributions per annotated CD8+ cell-subclusters. D Relative contribution of eight CD8+ cell-subclusters in distinct sample pathology.
P values were assessed by Student’s t test. E CIP associated CD8+ T frequencies as determined by flow cytometry (percentage of live CD8+
cells), P values were assessed by Student’s t test. F Ranking of significantly differentially expressed genes in CIP associated CD8+ T cell clusters
compared with other CD8+ T cell clusters. G Box plots showing the expression of immune-checkpoint (PDCD1), immune cell-homing signals
(CCL3), effector (IFNG, GNLY) and cytotoxic (GZMB, PRF1) markers in CD8+ cell-subclusters in distinct pathology samples. P values were
assessed by Wilcoxon test, *P < 0.05, **P < 0.01, ***P < 0.001. H GSEA plots showing pathways enriched in CIP associated CD8+ T cell clusters
compared with other CD8+ T cell clusters.
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Fig. 3 TCR and trajectory analysis of CD8 T cell subclusters in CIP+ and CIP− samples. UMAP plot showing TCRαβ clonality for each CD8T cell
subset (A), and pathology (B) estimated by scRepertoire. C Bar plot showing the percentage of TCR clonality types distribution across each CD8T cell
subset. D Heatmap showing the TCR clonality types overlap among each CD8T cell subset. Emonocle showing the differentiation trajectory among
each CD8T cell subset. F Sling shot showing the differentiation trajectory among each CD8T cell subset. G Heatmap showing dynamic changes in
gene expression along the pseudotime of CD8T cell differentiation trajectory. H Two-dimensional plots showing the dynamic expression of
Hallmark geneset scores along with the pseudotime in CIP+ and CIP− groups. The values of the y axis are the calculated GSVA scores. I Two-
dimensional plots showing the dynamic expression of significantly upregulated genes along with the pseudotime in CIP+ and CIP− groups.
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DISCUSSION
IrAEs caused by ICIs can complicate effective therapy and limit these
use in patients with cancer [35, 36]. Understanding the precise
pathophysiology associated with irAEs is critical for developing
noninvasive developing diagnostic and therapeutic strategies for CIP.

In this study, we used BALF, a noninvasive reproducible sampling
method, to generate a comprehensive and systematic single-cell
transcriptomic atlas of CIP. We identified the key cellular players,
molecular pathways, and effector programs associated with CIP.
Furthermore, the trajectories for both T cells and myeloid cells, as well
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as TCRαβ analysis, demonstrated the cellular differentiation programs
and clonality expansion associated with CIP. We are the first to use
scRNA-seq and scTCR-seq to present a transcriptomic atlas of the
bronchoalveolar immune landscape in CIP, comparing immune cell
types as well as their precise phenotype and clonotype distribution to
those of ICIs treated patients without CIP, and validated these results
with flow cytometry and cytokine expression analysis. Recently, a
study conducted by Franken et al. [37] have performed deep immune
profiling using scRNA-seq and scTCR-seq to discover the mechanism
of CIP; however, they compared CIP patients with ICI-untreated cancer
patients, which may not reflect the real differences in cellular and
molecular characteristics of irAEs induced by ICIs therapy.
Here, we demonstrated a dramatic accumulation of CXCL13+

CD4+ T and CXCL13+ CD8+ T cells, characterized by high
expression levels of the cytotoxic effector signatures IFNG, GZMB,
and PRF1, which supports previous findings that CD4+ and CD8+
T cell accumulation are hallmarks of CIP [25, 27, 37]. Recent studies
have shown that elevated frequencies and activation of CXCL13+
T cells associated with an effective response to ICIs therapy
[38–40]. TCR clonal expansion analysis revealed that CXCL13+
T cells exhibited hyperexpanded TCR clonotypes, and pseudotime
analysis revealed a potential differentiation trajectory from naïve
to cytotoxic effector status, highlighting the important role of
cellular phenotypical transition alongside CIP initiation and
progression. Therefore, we hypothesized that the activation of
naïve T cells played an important role in CIP and that the
activation of such T cells induced the subsequent recruitment of
additional CD8+ and CD4+ T cell populations from the blood.
Mast cells are tissue-resident, innate immune cells that play a

key role in the inflammatory response [41]. Activation of mast cells
by immunotherapy can induce pneumonitis [42]. In this study, we
observed an enrichment of mast cells in the CIP+ group.
Meantime, CXCL9+monocytes and LAMP3+DCs were also ele-
vated in CIP, and pseduotime trajectories showed that
LAMP3+DCs were derived from the differentiation of hyperin-
flammatory CXCL9+monocytes, whereas the differentiation rou-
tine of anti-inflammatory alveolar macrophages was blocked,
indicating a hyperinflammatory environment in CIP samples
[25, 37]. Importantly, LAMP3+DCs expressed the lymphocyte
recirculation chemokine CCL19, the maturation markers LAMP3
and CD83, and the migration marker CCR7. GSEA revealed that
LAMP3+DCs exhibited high maturation and migration scores,
suggesting that LAMP3+DCs have the potential to migrate from
tumors to BALF, which supports previous findings that
LAMP3+DCs can migrate from tumors to hepatic lymph nodes
[43]. With our results, we speculate that LAMP3+DCs may migrate
from the lung tumor site to the BALF, which could be a potential
liquid biomarker to monitor CIP.
The abundance of CXCL9+ monocytes and LAMP3+ DCs was

also notably correlated with cytotoxic effector CXCL13+ CD4+ T,
CXCL13+ CD8+ T, and GZMB+ CD8+ T cells. Multilineage
intercellular crosstalk analysis revealed that CXCL9+monocytes
and LAMP3+DCs interacted closely with the cytotoxic effectors
CXCL13+ T and GZMB+ CD8+ T cells through CXCL9/10/11-
CXCR3, FASLG-FAS, IFNG-IFNGR1/IFNGR2, and TNF-TNFRSF1A
ligand-receptor pairs. Interestingly, IFN-α or IFN-γ response and

TNF-α genes (IFNG, STAT1, TNF) were highly expressed in CIP
associated CD4+ and CD8+ T cell clusters alongside pseudotime
of the T cell differentiation trajectory, with the receptor IFNGR1/2,
TNFRSF1A increased alongside pseudotime of the myeloid cell
differentiation trajectory. IFN-γ can directly induce epithelial cells
apoptosis and lead to inflammatory bowel disease pathogenesis
[44]. TNF is a crucial proinflammatory cytokine in a wide range of
inflammatory diseases [45]. CXCL9/10, the ligands for CXCR3 and
induced by IFNγ, were overexpressed by monocytes in patients
with CIP versus patients without CIP, which was also enriched in
patients with colitis induced by ICIs [30], are important for
recruiting effector T cells to tumors, which would be expected to
have positive effects on anti-tumor immunity [46]. The FASLG-FAS
pathway is a representative system of apoptosis signaling ligand-
receptor molecules that may play an important role in the
pathogenesis of fibrosing lung diseases [47]. Therefore,
CXCL9+monocytes and LAMP3+DCs may be key regulators and
cellular players that led to the recruitment of cytotoxic effector
T cells by upregulating of IFN-α, IFN-γ, TNF-α, CXCL and FAS
signaling. These results indicated that the blockade of IFN-α, IFN-γ,
TNF-α, CXCL and FAS signaling might be effective in modulating
the inflammatory response induced irAEs by ICIs.
This study had several shortcomings, including a limited

number of heterogeneous patients and a lack of longitudinal
samples collected before and after the occurrence of CIP.
Secondly, our BALF results need to be validated in a large
independent patient cohort using tissue scRNA+TCR-seq. How-
ever, this single-cell transcriptome and the TCR landscape of
bronchoalveolar immune cells reveal an in-depth understanding
of the mechanisms underlying immunopathogenesis in CIP and
further support the possibility of using immune cells in BALF as
biomarkers in the prediction of CIP.

METHODS
Study population
Patients diagnosed with NSCLC and treated with ICIs were enrolled in this
prospective observational study. BALF was collected whenever patients
underwent a bronchoscopy. Samples were obtained before the initiation of
steroids and antibiotics. A clinical diagnosis of CIP was adjudicated by the
multidisciplinary irTox team. If CIP was diagnosed, the BALF sampled was
categorized as “CIP”. After adjudication, the patients with CIP were treated
with high-dose steroids (1 mg/kg prednisone). Second-line agents
(tocilizumab) were added at the discretion of the treatment team if no
improvement was observed after 72 h.

CIP diagnosis
CIP was defined as shortness of breath, decreased exercise tolerance,
exertional desaturation, and/or cough, along with the presence of new
radiographic infiltrates and a lack of evidence of infection (negative
cultures on BALF, negative respiratory viral swab) or alternate etiologies
(diffuse alveolar hemorrhage, heart failure) [25]. Radiographic assessment
was performed based on the Response Evaluation Criteria in Solid Tumors
(RECIST); cases where new infiltrates were considered to represent tumor
progression or radiation pneumonitis were excluded from both the control
and CIP groups. The diagnosis of CIP was adjudicated following a review
and discussion of the pertinent microbiologic and radiographic [17, 48]
data by two oncologists and a radiologist. Patients in whom clinical

Fig. 4 CIP associated CD4+ T Cell with cytotoxic effector programs. A Sub-clustering of CD4+ T cells revealed 6 cell-subclusters. B Heat map
showing the scaled expression of top 6 differentially expressed genes among six CD4+ cell-subclusters. C The proportion of sample
contributions per annotated CD4+ cell-subclusters. D Relative contribution of six CD4+ cell-subclusters in distinct sample pathology. P values
were assessed by Student’s t test. E CIP associated CD4+ T frequencies as determined by flow cytometry (percentage of live CD4+ cells), P
values were assessed by Student’s t test. F Ranking of significantly differentially expressed genes in CIP associated CD4+ T cell clusters
compared with other CD4+ T cell clusters. G Box plots showing the expression of immune-checkpoint (PDCD1), immune cell-homing signals
(CXCL3), effector (GNLY) and cytotoxic (GZMA, GZMM, PRF1) markers in CD4+ cell-subclusters in distinct pathology samples. P values were
assessed by Wilcoxon test, *P < 0.05, **P < 0.01, ***P < 0.001. H Functional enrichment analysis showing significant hallmark gene sets enriched
in CIP associated CD4+ T cell clusters compared with other CD4+ T cell clusters.
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Fig. 5 TCR and trajectory analysis of CD4 T cell subclusters in CIP+ and CIP− samples. UMAP plot showing TCRαβ clonality for each CD4T cell
subset (A), and pathology (B) estimated by scRepertoire. C Bar plot showing the percentage of TCR clonality types distribution across each CD4T cell
subset. D Heatmap showing the TCR clonality types overlap among each CD4T cell subset. E Slingshot showing the differentiation trajectory among
each CD4T cell subset. F monocle showing the differentiation trajectory among each CD4T cell subset. G Heatmap showing dynamic changes in
gene expression along the pseudotime of CD4T cell differentiation trajectory. H Two-dimensional plots showing the dynamic expression of
Hallmark geneset scores along with the pseudotime in CIP+ and CIP− groups. The values of the y axis are the calculated GSVA scores. I Two-
dimensional plots showing the dynamic expression of significantly upregulated genes along with the pseudotime in CIP+ and CIP− groups.
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Fig. 6 Hyperinflammatory myeloid cells expanded in CIP. A Sub-clustering of myeloid cells revealed nine cell-subclusters. B The proportion
of sample contributions per annotated myeloid cell-subcluster. C Expression of representative cell type signature among nine myeloid cell-
subclusters. D, Relative contribution of nine myeloid cell cell-subclusters in distinct sample pathology. P values were assessed by Student’s t
test. *P < 0.05, **P < 0.01, ***P < 0.001. E Expression of migration, maturation, immune checkpoints, and TNF pathway score in nine myeloid cell
cell-subclusters, P values were assessed by Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001. F Volcano map showing the upregulated genes
between CIP+ associated myeloid cells subclusters and CIP− associated myeloid cells subclusters. G GSEA plots showing pathways enriched
in CIP associated myeloid cell subclusters compared with other myeloid cell subclusters.
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Fig. 7 Trajectory analysis of myeloid cell subclusters in CIP+ and CIP− samples. A Slingshot showing the differentiation trajectory among
each myeloid cell subset. B, C Monocle2 showing the differentiation trajectory among monocytes and DC subsets. D Heatmap showing
dynamic changes in gene expression along the pseudotime of monocytes and DC subsets differentiation trajectory. E Two-dimensional plots
showing the dynamic expression of Hallmark geneset scores along with the pseudotime in CIP+ and CIP− groups. The values of the y axis are
the calculated GSVA scores using Hallmark geneset. F Two-dimensional plots showing the dynamic expression of significantly upregulated
genes along with the pseudotime in CIP+ and CIP− groups.
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Fig. 8 Multi-lineage intercellular crosstalk and potential therapeutic targets for CIP. A Heatmap showing the Person correlation coefficient of
cell types abundance. B Differential number of interactions in different BALF immune cell subtypes. C Number of inferred interactions and scores in
distinct BALF sample pathology. D Circle plots showing the significant ligand-receptor pairs between CXCL13+ T cells, CXCL9+ monocytes and
LAMP3-DC. E Dot plot showing the communication probability of the indicated ligand-receptor pairs between CXCL13+ T cells, CXCL9+monocytes
and LAMP3-DC. F Heatmap showing averaged expression of the indicated cytokine and cytokine receptor genes compared among patient groups.
G, H Violin plot showing the expression of CIP associated genes (G), and signature (H) in CIP+ lung tissue and CIP− lung tissue. I the diagnostic
power of CIP associated signature for classification of CIP+ lung tissue and CIP− lung tissue. P values were assessed by the Student’s t test.
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requirements regarding infection were present (e.g., clinical presence of
fever, purulent sputum, sick contacts, and elevated bands on complete
blood count differential) were not adjudicated for CIP, even if the BALF
cultures were negative. CIP was graded based on the National Cancer
Institute’s Common Terminology Criteria for Adverse Events (CTCAE),
version 4.03.10. The radiological patterns of CIP was described according to
the study by Naidoo et al. [49].

BALF collection
In the control patients, the unaffected middle lobe (without tumor) was
lavaged. In patients with CIP, areas with new infiltrates that were not
associated with the tumor were lavaged. Volumes of instilled and returned
saline were extracted from the BALF procedure notes. The BALF specimens
were processed using an ammonium chloride–potassium lysis solution.

Isolation of BALF cells
Approximately 20ml of BALF was collected and placed on ice. The BALF
was processed in 2 h. After passage of BALF through a 100-μm nylon cell
strainer to remove clumps and debris, the supernatant was centrifuged,
and the cells were re-suspended in cooled RPMI 1640 complete medium.
The supernatant samples were collected and stored at −80 °C until use.

Single-cell sequencing and pre-processing data
We prepared the single-cell RNA-seq and TCR libraries on the Chromium
platform (10× Genomics), using the Chromium Next GEM Single-Cell 5’ Kit v2.
The FACS sorting live cells (7-AAD negative) were pooled together and
washed with RPMI-1640 three times, concentrated to 600–1 000 cells per μL,
then immediately loaded on a 10× microfluidic chip (10x Genomics) following
the manufacturer’s protocol to generate a complementary deoxyribonucleic
acid (cDNA) library in Capitalbio Technology Corporation (China). Amplified
cDNA was then used for both 50 gene expression library construction, and
TCR V(D)J targeted enrichment was performed using the Chromium Single-
Cell V(D)J Enrichment Kit, Human T cell (10x Genomics), followed by V(D)J
library construction. Raw sequencing data were aligned to the GRH38
reference genome using the Cell Ranger (10X Genomics, v4) count and vdj
functions. The count matrices of gene expression from each sample were
imported into Seurat [50]. We selected high-quality cells for further analysis
following three criteria:1) cells had over 2 001 unique molecular identifiers
(UMIs), fewer than 6 000, over 301 expressed genes or fewer than 10% UMIs
derived from the mitochondrial genome. 2) Genes were expressed in over 10
cells in a sample. 3) Cell doublets were removed using the DoubletFinder [51]
R package. The cell-by-gene expression matrices of the remaining high-quality
cells were integrated using the RunFastMNN function provided by the
SeuratWrappers R package and normalized to the total cellular UMI count. The
union of the top 2 000 genes with the highest dispersion in each dataset was
used to generate an integrated matrix. We then performed data normal-
ization, dimension reduction, and cluster detection, as previously reported.
Briefly, gene expression matrices were scaled by regressing the total cellular
UMI counts and the percentage of mitochondrial genes. Principal component
analysis (PCA) was conducted using highly variable genes (HVGs) and the top
30 significant principal components (PCs) were selected for the Uniform
Manifold Approximation and Projection (UMAP) dimension reduction, and
visualization of gene expression. We annotated cell subclusters with gene
expression patterns similar to those of the same cell type, and the cell types in
the resulting two-dimensional representation were annotated to known
biological cell types using canonical marker genes.

Trajectory analysis
To explore potential differentiation routines among CD4+ T cells, CD8+
T cells, and myeloid cell subtypes, we performed trajectory analysis via the
monocle [52] and Slingshot [53] packages. For monocle trajectory inference
analysis, we constructed the monocle object using “newCellDataSet”
function, and the DEGs calculated using the “differentialGeneTest” function
were selected for the trajectory analysis. Then, the “DDRTree” function was
used for dimensionality reduction and the “plot_cell_trajectory” function for
visualization. For Slingshot [53] trajectory inference analysis, Slingshot was
used and PCA-based dimension reduction was performed with DEGs,
followed by two-dimensional visualization with UMAP.

Pathway and signature enrichment analysis
To illustrate the enriched signaling pathways of T cells and myeloid
subtypes, we used the GSVA [54] package to assess pathway differences

using the hallmark gene set and the C2 gene set provided by the
Molecular Signatures Database (MSigDB), which were calculated with a
linear model offered by the limma package. We used the GSEA package to
calculate the distribution of gene sets in lists of genes ordered by
population expression differences. We also employed GSVA to evaluate the
expression levels of CIP-associated signatures (CXCL9/10/11/13, CXCR3/6,
FASLG, and IFNG) in 8 CIP+ lung tissues and 29 normal controls [27].

Intercellular crosstalk
We used the Cellchat [55] package (v0.0.2) to infer intercellular
communication and significant ligand-receptor pairs that participate in
CIP immunopathogenesis, following a standard pipeline implemented in R
(https://github.com/sqjin/CellChat). We set the ligand-receptor interaction
list for human and projected the gene expression data onto a protein-
protein interaction (PPI) network by identifying the overexpressed ligand-
receptor interactions. To obtain biologically significant cell-cell commu-
nication, the probability values for each interaction were calculated by
performing permutation tests. The inferred intercellular communication
network of each ligand-receptor pair and each signaling pathway was
summarized and visualized using circle plots and heatmaps.

TCR analysis
We used the scRepertoire [56] R package to analyze the TCR clonality of
CD4+ T cell and CD8+ T cell, briefly, the filtered_contig_annotations output
from Cell Ranger was imported in Seurat to create a list object of TCR genes
and CDR3 sequences by cell barcodes using combineTCR function. The
combineExpression function was used to integrate clonotype information
with the filtered Seurat object. The frequency of the clonotypes was binned
by the patient using the following parameters: single= 1, small= 5,
medium= 20, large= 100, hyperexpanded= 500. The clonotypes were
determined using VDJC genes comprising the TCR. The distribution of the
clonotype bins was visualized using the Seurat DimPlot function.

Definition of the phenotypes of myeloid cell subclusters
Phenotypic scores were defined as the average expression levels of the
signature genes. The signature genes [43] used to define the M1/M2
phenotype scores of the macrophage clusters and the migration and
activation scores of the DC clusters are listed in the Supplementary Table 10.

Cytokine measurement by Luminex and statistic
Cytokines that include 6Ckine/CCL21, BCA-1/CXCL13, CTACK/CCL27, ENA-78/
CXCL5, Eotaxin/CCL11, Eotaxin-2/CCL24, Eotaxin-3/CCL26, Fractalkine/CX3CL1,
GCP-2/CXCL6, GM-CSF, Gro-α/CXCL1, Gro-β/CXCL2, I-309/CCL1, IFN-ϒ, IL-1β,
IL-2, IL-4, IL-6, IL-8 / CXCL8, IL-10, IL-16, IP-10/CXCL10, I-TAC/CXCL11, MCP-1/
CCL2, MCP-2/CCL8, MCP-3/CCL7, MCP-4/CCL13, MDC/CCL22, MIF, MIG/CXCL9,
MIP-1α/CCL3, MIP-1δ/CCL15, MIP-3α/CCL20, MIP-3β/CCL19, MPIF-1/CCL23,
SCYB16/CXCL16, SDF-1α+β/CXCL12, TARC/CCL17, TECK/CCL25, TNF-α were
detected in CIP+ and CIP− BALF samples according to the instruction (Bio-
Rad, Bio-Plex Pro™ Human Chemokine Panel, 40-Plex), each group contains
over five samples. The expression matrix of cytokines is listed in
Supplementary Table 11 and was scaled and clustered using complete
linkage clustering and Euclidean distance using a heatmap. A Student’s T test
was used to compare the mean differences between the control and CIP
cytokine values. Statistical significance was established at p< 0.05.

Flow cytometry
To validate the scRNA-seq findings, the following antibodies were used:
anti-human CD45 (AmCyan, 339203, Biosciences), Anti-Human CD3 (Pacific
Blue, 300330, Biolegend), anti-human CD4 (PE/Cyanine7, 300512, Biole-
gend), anti-human CD8a (APC/Cyanine7, 300926, Biolegend), Anti-Human
CD274 (APC, 329707, Biolegend), Anti-Human CXCL13 (APC, WA3170553,
Invitrogen), anti-human/mouse Granzyme B (FITC, 515403, Biolegend),
anti-human Granzyme K (FITC, 370507, Biolegend), Anti-Ki-67 (PE, 556027,
Biosciences), anti-human CD68 (PE, 333808, Biolegend), κ isotype Ctrl (PE,
400112, Biolegend), κ isotype Ctrl (FC) (APC, 400122, Biolegend), κ isotype
Ctrl (FITC, 981802, Biolegend). Stained cells were detected using a BD
FACSCantoTM II and analyzed using FlowJo software.

DATA AVAILABILITY
The raw scRNA-seq data of the 7 CIP(+) samples and 6 CIP(-) samples can be
accessed in the Genome Sequence Archive (GSA)-Human database under accession
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code HRA002094 and the processed scRNA-seq data required to reproduce the
analysis and figures have been deposited on OMIX website with accession ID
OMIX001006 and OMIX004420.The bulk RNA-sequencing dataset of 8 CIP lung tissues
and 29 normal controls [27] has been deposited at https://data.mendeley.com/
datasets/8c3x28r5hk/. All the data generated and materials used in this manuscript
are available upon request.
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