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Going circular: history, present, and future of circRNAs in cancer
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To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have
been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and
post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal
and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to
ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis,
treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their
annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging.
Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and
potential utility in cancer-targeted therapy.
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BACKGROUND: THE ADVENT OF CIRCRNAS
Despite their recent fame, the discovery of circRNAs dates back
over 40 years. CircRNAs were first discovered in the murine
respirovirus (Sendai virus) [1] and in plant pathogenic viruses
termed viroids [2]. The initial physical evidence of the existence
of a circular form of RNA was obtained by electron microscope
analysis of the cytoplasmic fraction of eukaryotic (HeLa) cells in
1979 [3] and later in 1986 when they were identified within the
hepatitis delta virus (HDV) [4]. Such circular shaped viral
genomes possess the distinct property of generating multiple
copies of an RNA through the rolling circle replication
mechanism that facilitates the spread of infection more
efficiently. However, evidence of another type of circRNA as
intermediate molecules excised from pre-mRNA started emer-
ging [5–7]. In 1991, a group of researchers found the first
examples of endogenous spliced circRNAs in humans, tran-
scribed from the DCC gene and end-joined in a scrambled order
compared to the canonical linear sequence [8]. In parallel, the
mouse Sry gene, encoding a crucial molecule responsible for sex
determination during embryogenesis, was found to be
expressed in adult mice testes exclusively as a 1.23-kb circular
RNA [9]. During the late 1990s and early 2000s, several other
studies showed that circRNA-producing genes are widespread in
eukaryotic cells from flies to mammals including humans
[10–18].
Nevertheless, the lack of evidence of their translation into

polypeptides left researchers skeptical about the functional
significance of such RNAs, and for several decades circRNAs were
commonly disregarded as mis-splicing artifacts or by-products of
pre-mRNA processing [19]. With the advent of RNA sequencing
(RNA-seq) technologies and bioinformatics, the true abundance of
circRNAs was revealed. In 2012, an unexpected number of human

genes were reported to express “scrambled exons” resulting in
circular RNA isoforms [20]. A subsequent analysis of non-
polyadenylated libraries prepared from ribosomal RNA-depleted
RNAs, revealed >25,000 distinct RNA species containing “non-
colinear exons” in human fibroblasts [21] and, at the same time, a
new genome-wide in-silico approach identified ~2000 human, 700
nematode and 1900 mouse circRNAs that were more stable than
the associated linear mRNAs in vivo [18].
Since their discovery, thousands of circRNAs have been found to

be present in multiple organisms and their expression been
associated with developmental stages, physiological conditions,
and diseases including cancer. This has opened up a new field of
study aimed at elucidating their biogenesis and function as an
essential part of gene expression programs across eukaryotes (Fig. 1).

BIOGENESIS OF CIRCRNAS IN NORMAL AND PATHOLOGICAL
CONTEXTS
General features of circRNAs
Pre-mRNA splicing, facilitated by the spliceosome, is a mechanism
that is tightly coupled with transcription [22]. During this process,
introns are removed from precursor mRNAs (pre‐mRNAs) and the
exons are covalently joined to create linear mRNA molecules that are
translated into proteins. By contrast, back-splicing allows a down-
stream splice donor (5′ splice site) to join backwards to an upstream
splice acceptor (3′ splice site), resulting in a closed continuous head-
to-tail molecule known as a circRNA (Fig. 2). The resulting molecules
are devoid of terminal 5’ caps and 3′ polyadenylated tails [23–25], are
less accessible to exonucleases and are consequently more stable
than linear RNAs [26]. By rearranging the order of genomic
information, circRNAs also provide a unique opportunity to further
diversify gene expression across eukaryotes.
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Although circRNAs are preferentially back-spliced from
hundreds of human genes [20], including neuron-expressed
genes [27], back-splicing is typically much less efficient (<1%)
than canonical splicing [28] so circRNAs are often expressed at
lower levels than their corresponding linear mRNAs [29]. The
observed abundance at levels that exceed mRNAs (frequently
over tenfold) in a given cell type [21] is largely due to a
context- and time-specific accumulation of circRNAs that
occurs for example during aging [30–33] and neurodegenera-
tive [30, 34–36] processes. This is primarily attributed to their
exceptional stability. Indeed, whilst mRNAs are continually
degraded over time, circRNAs persist, thereby increasing the
ratio of circRNA to mRNA as time passes. Packaging into
exosomes and subsequent release into the extracellular space
[37–40], appears to clear the excessive accumulation of
circRNAs avoiding potential toxic effects. In some cases, after

being released into the extracellular environment, exosomes
can reach recipient cells and deliver circRNAs to trigger
functional responses and potentially induce a series of
phenotypic changes [41], including the spread of premetastatic
niches from cancer-derived exosomes [42, 43]. By contrast, in
cancer and highly proliferative cells, circRNAs are maintained
at low levels, possibly as a result of dilution effects caused by
cell division during the process of cell proliferation [44, 45].
The maturation of circRNAs is a tightly regulated process [46],

involving the same spliceosome components engaged in
canonical splicing, albeit recruited in a different order [47].
When pre-mRNA processing is inhibited, the intimate connec-
tion that exists between canonical splicing and back-splicing
[25, 27] results in the splicing machinery facilitating back-
splicing and thereby shifting the output of genes toward
circRNAs [48, 49]. Additional factors, including epigenetic

Fig. 1 The discovery of circRNAs. Timeline of milestone events leading to the discovery, research and development of circRNAs.

Fig. 2 Canonical splicing vs back-splicing. Starting from the same pre-mRNA molecule, linear splicing (red arrows) and head-to-tail back-
splicing (blue arrows) lead to a differential outcome in either processed mRNA/lncRNAs molecules or several types of circRNAs, respectively.
Adapted from “RNA Processing in Eukaryotes 2”, by BioRender.com (2023). Retrieved from https://app.biorender.com/biorender-templates.
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changes, can impact the biogenesis of circRNA making the
expression of mRNA and circRNA at the same locus less
predictable. For example, the repression induced by DNA
methylation in the main gene body of the parental genes
[50, 51] has been found to be one of the causes of altered
circRNA expression independent of the linear counterpart
[22, 50, 52]. Transcriptional silencing of circRNAs caused by
hypermethylation or altered histone modifications at their host
gene promoters has also been reported in cancer [53–55].

Mechanisms of circRNA biogenesis
A variety of circRNAs can be generated from a single protein-
coding or non-coding genomic locus [18] (Table 1) and can
significantly vary in length since not only are entire exons
susceptible to circularization, but so are other sequences,
including introns, non-coding antisense, 3′ UTR, 5′ UTR, or
transcribed intergenic regions. Additional circRNAs can also be
assembled from a combination of multiple exons and retained
intronic portions [18, 56]. Generally, at least three, often over-
lapping [57], mechanisms can lead to back-splicing including
lariat-driven circularization (exon skipping) [21] (Fig. 3a), intron
pairing-driven circularization [21] (Fig. 3b), and RNA binding
protein (RBP)‐driven circularization [27] (Fig. 3c).
In exon skipping a pre-mRNA is spliced into two RNA molecules

consisting of an mRNA from which at least one exon is missed, and a
lariat containing the skipped exons making circularization possible.
The predominant fraction of circRNAs (over 80%) are known to be
exon-derived circRNAs (ecircRNAs) [18, 20, 21]; these usually
originate from one to five pre-mRNA exons and preferentially
localize to the cytoplasm [56], most likely by escaping the nucleus
during mitosis [58]. The ATP-dependent RNA helicase DDX39A and
the spliceosomal RNA helicase DDX39B are involved in exporting
circRNAs from the nucleus to the cytoplasm by sensing the lengths
of mature circRNAs by an unclear mechanism [59]. Exonic
circularization seems to be strongly favored by longer exon length
(generally > 300 nt) [20, 21] flanked by intronic regions of similar
length and hosting inverted repeated sequences (e.g., ALU elements)
[21, 60, 61]. This appears to occur more frequently through the
second mechanism of intron pairing [30] where perfect comple-
mentarity between the two introns flanking the exon/exons of the
nascent circRNA is required. The successful intron pairing brings the
two splice sites into close proximity and the resulting secondary
structure facilitates back-splicing [60, 62–64]. Although favorable, the
presence of intronic repeat sequences is not always associated with
exon circularization [65, 66], and excessive stability of intron base
pairing can even sometimes prevent circRNA formation [62].
Several RBPs, including quaking (QKI) [67], muscleblind (MBL/

MBNL1) [68], and fused-in-sarcoma (FUS) [69] proteins, participate
in circRNA biogenesis by tethering specific motifs within adjacent
introns of nascent circRNAs and connecting the splice donor and
acceptor sites to form a closed intronic-paired RNA. In the cancer
context, QKI has been shown to induce the production of up to
one-third of the 300 most abundant circRNAs during epithelial-to-
mesenchymal transition (EMT) in immortalized human mammary
epithelial cells [67]. CircRNA formation via back-splicing is also
mediated by heterogeneous nuclear ribonucleoprotein L
(HNRNPL) which is required for prostate cancer growth in vitro
and is aberrantly expressed in human prostate tumors [70]. In this
regard, HNRNPL also facilitates the expression of an oncogenic
circRNA from the tumor-suppressor gene ARHGAP35 generally
associated with poor survival in cancer patients [71]. Further
mechanisms may combine the intron pairing process involving
RBPs with the additional involvement of ADAR (RNA editing)
proteins that couple A-to-I editing with the unwinding of the
dsRNA helical structures [72], preventing the pairing/looping of
intron sequences [73, 74]. By contrast, proteins such as NF90 and
NF110 [75], can stabilize the intronic RNA pairs at exonic junctions
of nascent circRNAs in response to viral infection and favor theirTa
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production, which is ultimately reduced when the proteins
migrate to the cytoplasm and viral infection terminates [76].
Overall, a combination of both cis- and trans-acting factors are
likely to provide a more complex set of processes that affect
circRNA biogenesis [57].
There is added complexity in the formation of circRNAs. When

introns are not excised properly and are retained in the newly
generated circRNAs, so-called exon–intron circRNAs (EIciRNAs) are
generated [68]. Conversely, if intron lariats that are correctly
circularized at the branchpoint 2′–5′ linkage and degraded from
the 3′ end up to the branchpoint, somehow escape the usual intron
debranching and subsequent degradation, stable circular intronic
RNAs (ciRNAs) can also be formed [56, 77]. Specific sequences (a
consensus motif containing a 7 nt GU-rich element and a 11 nt
C-rich element) near the 5′ splice site and branchpoint close to the
branchpoint site can prevent debranching by forming a structure
that limits access to the debranching enzyme. Both ciRNAs and
EIciRNAs are predominantly located in the nucleus and presumably
involved in the regulation of expression of neighboring genes in cis
[56, 68] as they have been found to be associated with RNA
polymerase II [56, 78, 79]. Screening of the human transcriptome
with a bioinformatic tool for circRNA identification has also revealed
the existence of a class of non-exonic circRNAs (intergenic circRNAs).
These circRNAs originate from intergenic portions of the genome
and contain two intronic circRNA fragments flanked by GT-AG (or
reverse complementary dinucleotides CT-AC) splicing signals that
act as the splice donor and acceptor of the circular junction while
forming an integrated circRNA [80]. Other than a weak but
significant enrichment of conserved nucleotides between a few
ciRNAs and intergenic circRNAs [18], very little is known about the
function of intergenic circRNAs (Fig. 3d).

CircRNA biogenesis during pathological processes
Distinct classes of circRNA can also be generated in pathological
contexts including cancer (Fig. 3d). For instance, the failure of
transcription termination and exceeding transcription into the
downstream gene followed by back-splicing can give rise to so-
called read-through circRNAs (rt-circRNAs) [49, 81] that may
incorporate exons from adjacent and similarly oriented genes and
appear to be associated with pathological phenotypes [82].
Uncontrolled gene transcription leading to pervasive transcription
read-through is typically associated with cancer. Likewise, fusion-

circRNAs (f-circRNAs) have been recently reported as originating
from cancer-associated chromosomal translocations and are able
to confer resistance to apoptosis-inducing drug therapy, promote
transformation and cell survival [83, 84]. For instance, the circRNA
generated by the MLL/AF9 fusion gene (f-circM9) in leukemia
causes pro-proliferative and pro-oncogenic effects [84]. Similarly,
the back-splicing of the non-small cell lung cancer (NSCLC)-
associated EML4-ALK fusion variant 3b generates a tumor-
promoting circRNA named f-circEA [83] and an additional variant
(f-circEA-2a) which enhances cell migration and invasion [85].

Further complexity in circRNA biogenesis
Some circRNAs may also contain modified nucleotides, such as
N6-methyl-adenosine patterns (m6A), that can further diversify
their biogenesis [86–88], as well as their fate, including their
degradation and cellular localization [89]. These m6A-modified
circRNAs often originate from unmethylated exons of linear
mRNAs and they are likely to be methylated during or after
circRNA formation [40, 88]. According to recent studies, the
efficient depletion of specific enzymes involved in such modifica-
tions (e.g., methylation writers, readers, etc.) affects a subset of
circRNAs (~20%) without significantly altering their linear isoforms
[90]. However, it is unclear whether or not additional factors play a
role in the mechanism through which m6A deposition may affect
the choice of back-splicing versus canonical splicing.
Alternative explanations of back-splicing should also be

contemplated. A proportion of discovered circRNAs might not
be functional per se but might offer through their back-splicing a
break between transcription of the main gene and translation,
allowing post-transcriptional regulatory processes to take place.
Offering a more radical perspective, recent studies have also
proposed that circRNAs form through pre-mRNA splicing errors
and are not able to confer any specific benefit [91].

BIOLOGICAL FUNCTIONS AND MECHANISMS OF ACTION OF
NON-CODING AND TRANSLATED CIRCRNAS
The number of unique circRNAs produced in human cells
(~100,000) [81, 92] largely exceeds the number of protein-
coding genes (~20,000) [93–95]. Despite their wide prevalence,
the majority of circRNAs have not been functionally characterized
and the biological role of many remains unclear [15, 16, 91]. A

Fig. 3 Mechanisms leading to the biogenesis of circRNAs. Three main mechanisms of back-splicing, such as lariat-driven circularization
(exon skipping) (A), intron pairing-driven circularization (B), and RNA binding protein (RBP)‐driven circularization (C) lead to the biogenesis of
circRNAs. Alternative processes (D) can also lead to the biogenesis of other special classes of circRNAs, including intergenic circRNAs or rt-
circRNAs and f-circRNAs, which are frequently associated with pathological conditions. Created with BioRender.com.
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growing body of evidence suggests that those carrying out
biological functions are likely to require a specific subcellular
localization and that their accumulation in specific disease
contexts [18], may indicate a link with the occurrence and
development of specific diseases including cancer. Despite the
fact that the majority of circRNAs are spliced out from protein-
coding pre-mRNAs, they are mainly classified as a special class of
non-coding RNAs (ncRNAs) since they are devoid of essential
elements for translation such as an open reading frame (ORF) and
a 5′ cap and the poly(A) tail, and are characterized by an average
length frequently longer than 200, that occasionally (e.g., in the
case of ecircRNAs and ciRNAs) can shorten to 100-200 nt [9].

CircRNAs as regulators of transcription
Beyond their regulatory effects on alternative pre-mRNA splicing
[27], circRNAs can function in more than a single mechanism (Fig. 4,
Table 2), including as regulators of transcription of the same genes
from which they are transcribed (parental genes) either alone or in
association with RBPs. In this regard, they have been found to either
upregulate the expression of specific transcription factors and
activate their parental gene’s transcription, or to favor premature
transcription termination through the formation of RNA-DNA hybrid
(R-loops) with the subsequent upregulation of a truncated, non-
functional isoform [96]. CircRNAs can also induce promoter CpG
demethylation thereby changing the epigenetic state, and switch
on the activity of their parental genes [97, 98]. Through this positive
feedback mechanism of inducing DNA hypomethylation in CpG
islands of the promoter by recruiting the methylcytosine dioxygen-
ase TET1, circFECR1 activates its parental FL1 (friend leukemia virus
integration 1) (onco) gene and favors breast cancer cell metastasis
[98]. An interaction with the normal activity of RNA polymerase II
and with other components of the transcription machinery proteins

has also been reported [56, 68]. CircRNAs that are mainly located in
the nucleus, such as EIciRNAs, can bind the small nuclear U1
ribonucleoprotein (U1 snRNP) through RNA-RNA base pairing and
then interact with RNA polymerase II at the parental gene promoter
thereby enhancing their expression [68]. Similarly, ciRNAs accumu-
late at their sites of transcription and can increase the transcription
rate of parental genes by tethering the elongation Pol lI complex
and ultimately regulating its elongation activity [56].

CircRNAs as miRNA sponges
Initial examples of functional circRNAs were shown to work as
efficient microRNA sponges, post-transcriptionally regulating the
activity of their downstream target genes [99], as well as acting as
miRNA-reservoirs or miRNA-cargos. This has been widely con-
firmed by their significant localization inside exosomes [40] and a
well reported association with Argonaute proteins [99]. Since the
discovery of the antisense transcript cerebellar degeneration-
related protein (CDR1as), also known as the circRNA sponge for
miR-7 (CiRS-7), and its role as a competing endogenous RNA
(ceRNAs) [99] with > 60 miRNA binding sites, more studies have
corroborated the ability of circRNAs to act as ceRNA or miRNA
sponges [100, 101]. Among several circRNAs associated with
altered target gene expression in cancer [102–105], circHIPK3
regulates cell growth by sponging multiple miRNAs, such as the
tumor-suppressor miR-124 [106], whereas circITCH acts as cancer
inhibitor by sponging several miRNAs, including miR-7, miR-17,
and miR-214, suppressing the Wnt/β-catenin pathway in esopha-
geal squamous cell carcinoma (ESCC) [107].

CircRNAs as modulators of RNA stability
In addition, circRNAs can influence the stability of other RNA
molecules, including both lncRNAs and mRNAs [108]. An example is

Fig. 4 Biological functions of circRNAs. CircRNAs can work as multifunctional devices serving as transcription regulators of their parental
genes (1), as microRNA sponges affecting genes post-transcriptionally (2), or as translated short peptides/proteins (3). Additionally, circRNAs
can affect the stability of other RNA molecules (mRNAs or lncRNAs) (4), accumulate inside of exosomes and mediate cellular response (5),
engage with RBPs and acting as either decoy (6), or scaffold molecules (7), as well as directing RBP cellular localization (8). Adapted from “DNA
vs mRNA Transfection”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.
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Table 2. Mechanisms of action of circRNAs in human cancers.

CircRNA Cancer type Role Mechanism of Action Refs

circHIPK3 Lung cancer Activates PI3K/AKT signaling
pathway

Sponging miR-188-3p [224]

circTP63 Lung cancer Facilitates cell-cycle progression Competitive binding to miR-873-3p [225]

circFGFR1 Lung cancer Upregulates CXCR4, anti-PD-1
resistance

Sponging miR-381-3p [203]

circFOXM1 Lung cancer Suppresses FAM83D Sponging miR-614 [226]

circFARSA Lung cancer Upregulates B7-H3 Sponging miR-15a-5p [227]

circXPO1 Lung cancer Promotes metastasis Binding to IGF2BP1 and stabilizing CTNNB1 [110]

circNDUFB2 Lung cancer Acts as a tumor suppressor and
favors antitumor immunity

Forming complexes with TRIM25 and IGF2BPs
for IGF2BPs ubiquitination

[118]

circNSUN2 Colorectal cancer Promotes malignant tumor
progression

Binding to IGF2BP1 and stabilizing HMGA2
mRNA

[89]

circPPP1R12A Colon cancer Promotes cell proliferation and
metastasis

Encoding circPPP1R12A-73aa and regulates
the Hippo-YAP signaling

[128]

circYAP Breast cancer Inhibits YAP translation Binding p53 and MDM2 [228]

circDNMT1 Breast cancer Induces autophagy Nuclear translocating AUF1, p53 [210]

circFOXO3 Breast cancer Promotes PUMA expression and
apoptosis

Facilitating p53 ubiquitination [229]

circSKA3 Breast cancer Promotes cell invasion Interacting with Tks5 and integrin β1 [230]

circWWC3 Breast cancer Promotes EMT, upregulates EGFR,
MAPK1

Sponging miR-26b-3p, miR-660-3p [231]

circTADA2A Breast cancer Suppresses migration and invasion Sponging miR-203a-3p [232]

circFECR1 Breast cancer Promotes metastasis Activating FL1 parental gene [98]

circNRIP1 Gastric cancer Activates AKT1/mTOR pathway Sponging miR-149-5p [233]

circSERPINE2 Gastric cancer Activates BCL2 signaling pathway Sponging miR-375 [234]

circDONSON Gastric cancer Promotes cell migration via SOX4 Binding BURF complex [235]

circDLST Gastric cancer Activates NRAS/MEK/ERK1/2
pathway

Sponging miR-502-5p [236]

circLMTK2 Gastric cancer Acts as a tumor suppressor Sponging miR-150-5p [237]

circMAPK1 Gastric cancer Acts as a tumor suppressor Encoding MAPK1-109aa which suppresses
MAPK signaling

[238]

circDLDG1 Gastric cancer Promotes EMT, metastasis and
anti-PD-1 resistance

Regulating CXCL12 by sponging miR-141-3p [204]

circARHGAP35 Hepatocellular carcinoma Promotes tumor progression,
invasion and metastasis

Encoding circARHGAP35 protein which
interacts with the transcription factor TFII-I

[71]

circNT5E Glioma/Gliobastoma Upregulates NT5E, SOX4 and
PIK3CA

Sponging miR-422a [239]

circNFIX Glioma/Gliobastoma Activates Notch signaling Sponging miR-34a-5p [240]

circTTBK2 Glioma/Gliobastoma Upregulates EZH2 Binding miR-217/HNF1β/Derlin-1 [241]

circCFH Glioma/Gliobastoma Regulates the AKT signaling Sponging miR-149 [242]

circSMARCA5 Glioma/Gliobastoma Acts as a competitive endogenous
RNA

Binding SRSF1/SRSF3 [243]

circE-cad Glioma/Gliobastoma Maintains cancer stemness Encoding C-E-Cad- 254aa that interacts with
EGFR and activates STAT3 signaling

[129]

circFBXW7 Glioma/Gliobastoma Inhibits the effects on cell cycle Encoding FBXW7-185aa which causes
reduction of c-Myc half life

[127]

circSHPRH Glioma/Gliobastoma Acts as a tumor suppressor Encoding SHPRH-146aa [126]

circPAN3 Acute myeloid leukemia Mediates drug resistance via
AMPK/mTOR

Via miR-153-5p/miR-183-5p-XIAP axis [244]

circDLEU2 Acute myeloid leukemia Promotes PRKACB expression Suppressing of miR-496 [245]

circPVT1 Acute myeloid leukemia Regulates cells proliferation,
migration and apoptosis

Stabilizing c-MYC and CXCR4 expression [246]

circHIPK2 Acute myeloid leukemia ATRA-induces differentiation Via miR-124-3p/CEBPA [247]

circRNF220 Acute myeloid leukemia Increases cell migration, invasion Sponging miR-30a [248]

circHIPK3 Chronic myelocytic
leukemia

Increases cell proliferation and
invasion

Sponging miR-124, miR-506 [249]
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the case of CiRS-7/CDR1as which can stabilize its cognate mRNA by
forming an RNA duplex [17]. The stabilization of RNA molecules can
also occur in cooperation with proteins; for example, circZNF609
favors the recruitment of the protein ELAV1 (also known as HuR),
and its interaction increases the stability and/or translation of a pool
of mRNAs, including CKAP5 mRNA expressing a protein that
regulates microtubule function and sustains cell-cycle progression
in cancer cells [109]. Likewise, circXPO1 promotes lung adenocarci-
noma (LUAD) progression by recruiting IGF2BP1 to enhance the
stability of CTNNB1 mRNA [110]. A similar mechanism was described
a few years earlier in colorectal cancer for circNSUN2 which is able to
stabilize HMGA2 mRNA by enhancing its interaction with IGF2BP2 to
promote malignant progression [89].

CircRNAs as RBP partners
As well as being required for their back-splicing and gene
transcription regulation, circRNAs are also able to engage with
RBPs to direct their cellular localization [111]. Given their
preferential location inside the cytoplasm, circRNAs can indeed
sequester cytoplasmic proteins and prevent their nuclear entry
[112], serve as RBP decoys to regulate their function [113] or act
as scaffold molecules for complex assembly [55, 114, 115]. For
instance, in human cervical carcinoma HeLa cells, circPABPN1,
binds the RBP HuR and affects the translation rate of the
parental gene PABPN1 by preventing HuR binding to the
cognate mRNA [116]. In this regard, a remarkable tumor-
suppressor example in breast cancer is represented by the
circFOXO3 that binds both p53 and the E3 ubiquitin ligase
MDM2, which normally mediates the degradation of the
transcription factor Foxo3. This association promotes the
degradation of P53 while preventing the degradation of the
pro-apoptotic Foxo3 derived from its parental gene [117]. In
NSCLC, the inhibitory effects on tumor growth and metastasis
are instead caused by the scaffolding action of circNDUFB2 that
forms a ternary complex with both TRIM25 and IGF2BPs to
facilitate the ubiquitination and degradation of IGF2BPs and
ultimately activate an antitumor immune response [118].
Conversely, the successful interaction of the oncogenic circ-
Amotl1 with the proto-oncogene c-MYC ensures the retention in
the nucleus of c-Myc protein and consequently promotes
tumorigenesis [119].

CircRNAs as translated peptides
Although the majority of circRNAs are expected to be non-coding,
both in vivo and in vitro experiments have demonstrated their
association with ribosomes and translation into proteins
[14, 120, 121]. Bioinformatic predictions estimate that only a small
proportion of circRNAs host both ORFs and internal ribosome
entry site (IRES) elements, or incorporate the m6A RNA modifica-
tion in their 5′ UTR thereby becoming competent for translation

via a cap-independent mechanism. As a result, shortened versions
of canonical proteins, acting as modulators of dominant negative
protein variants, decoys, or alternative protein complexes are
generated [120]. However, according to a recent study, IRES-like
short elements that are significantly enriched in endogenous
circRNAs, are sufficient to drive extensive circRNA translation [122],
suggesting that circRNA translation might be a far more
widespread phenomenon than initially estimated [123–125].
Besides the better studied translated circZNF609, which harbors
IRES elements and undergoes cap-independent translation [120],
cancer-associated examples of translated circRNAs include the
circular form of the SHPRH gene (circSHPRH) which encodes the
novel identified protein termed SHPRH-146aa [126]. Together with
circSHPRH, SHPRH-146aa is normally highly expressed in normal
human brains but downregulated in glioblastoma, suggesting a
potential role as a tumor suppressor [126]. Inhibitory effects on
glioma proliferation and cell-cycle acceleration are instead
mediated by a 185 amino acid protein encoded from circFBXW7
(FBXW7-185aa) which reduces the half life of c-Myc by antagoniz-
ing USP28-induced c-Myc stabilization, suggesting new prognostic
implications for glioma patients [127]. By contrast, translation of
the circPPP1R12A, (generally up-regulated in colon cancer) into a
73 amino acid small polypeptide (circPPP1R12A-73aa) promotes
rapid cancer cell proliferation and metastasis via the Hippo-YAP
pathway [128]. A similar oncogenic effect is caused by the
E-cadherin variant encoded by the circE-Cad at the CDH1 gene (C-
E-Cad- 254aa), involved in the maintenance of the cancer
stemness in glioblastoma by interacting with EGFR and activating
downstream STAT3 signaling [129]. In hepatocellular carcinoma
(HCC), tumor progression, invasion and metastasis, can instead be
caused by an exceptionally long (1289aa) oncogenic protein,
encoded by circARHGAP35 through alternative m6 A-dependent
translation [130] that interacts with the transcription factor TFII-I in
the nucleus [71]. Oncogenic virus-derived circRNAs can also be
translated into proteins. For example, the highly expressed human
papillomavirus-derived circE7, displays oncogenic activity in
cervical and head and neck cancers, and has been found to be
translated into an E7 oncoprotein [131]. Experimentally validated
and functionally characterized peptides encoded by ncRNAs
(ncPEPs), including circRNAs, have been recently annotated in
the new database FuncPEP [132].

DETECTION AND CHARACTERIZATION OF CIRCRNAS:
CHALLENGES AND STRATEGIES
Clinical applications of circRNAs rely on accurate RNA profiling
(Box 1); this includes annotating new RNA species and quantifying
their abundance [133]. However, detecting and studying circRNAs
poses challenges at several levels due to their circular conforma-
tion and sequence overlap with their linear mRNA counterparts.

Table 2. continued

CircRNA Cancer type Role Mechanism of Action Refs

circBA9.3 Chronic myelocytic
leukemia

Promotes cancer cell survival Upregulating c-ABL or BCR-ABL1 [250]

circITCH Multiple myeloma Acts as a tumor suppressor Regulating miR-615-3p/PRKCD axis [249]

circIARS Pancreatic cancer Promotes metastasis via exosomes Downregulating miR-122 [251]

circPDE8A Pancreatic cancer Promotes tumor invasion Via miR-338/MACC1/MET axis [252]

circHIPK3 Esophageal squamous cell
carcinoma

Regulates cell growth Sponging miR-124 [106]

circITCH Esophageal squamous cell
carcinoma

Acts as a tumor suppressor Sponging miR-7, miR-17, miR-214, etc [107]

circPABPN1 Cervical carcinoma Regulates translation of parental
gene PABPN1

Binding RBP HUR [116]
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Methods for the detection of circRNAs
RNA-based high-throughput sequencing technologies (e.g., RNA-
seq), have allowed genome-wide annotation and quantification
[133] of a number of diverse coding and non-coding RNAs
[134, 135] based on the selective isolation of ribosomal RNA

(rRNA)-free polyadenylated RNA species using oligo-dT primed
reverse transcription. Improved methodologies that employ the
preparation of rRNA-depleted libraries and random priming for
cDNA synthesis (ribo-depleted total RNA-seq) [135], have
enhanced the annotation of RNAs to include large non-
polyadenylated transcripts encompassing a compendium of
circRNAs [136].
Traditional methods, such as RT-qPCR using sets of “divergently

oriented” primers designed to cover the circRNA back-spliced
junction, and Northern blotting, which can separate RNA
molecules of different size and abundance based on their speed
in electrophoresis [25, 30, 34], can help to discern individual
circRNAs from their linear counterparts. RNase R treatment-based
strategies that preferentially degrade linear over circular RNAs,
have been used to validate the presence of and enrichment of
circRNAs in a total RNA pool [21, 137]. However, the real efficacy of
such techniques remains controversial [45, 138] as demonstrated
by one of the best characterized circRNAs, CiRS-7/CDR1as, which is
exceptionally sensitive to RNase R treatment [21]. These conven-
tional methods provide useful but limited information and, as in
the case of Northern blotting, they are limited by low sensitivity,
low throughput, and elaborate steps [139].
The use of microarrays with probes spanning back-splice

junctions has also been employed as a suitable screening tool;
however, this approach can sometimes lead to the erroneous
detection of linear species and can generate data that is not easily
consistent between studies [140]. Nonetheless, the identification
and quantification of circRNAs requires especially designed
bioinformatics pipelines. Over the years, several computational
algorithms have been developed to detect non-linear splice
events by sequence alignment of reads covering the back-splice
site to the reference genome, including algorithms that can
reconstruct full-length circular RNAs [141]. Differences in their
sensitivity and precision can unfortunately lead to an under-
estimation and incomplete annotation of circRNAs [136, 142]. A
similar challenge applies for both de novo and exon–intron
sequence-based prediction tools that can often generate dramatic
differences in output and therefore require further validation with
other approaches [143]. A comprehensive evaluation of ~100
circRNA bioinformatics tools, including web services, databases,
stand-alone programs and pipeline tools based on their perfor-
mance and limitations, has been recently published [144].
Intracellular visualization, localization, and quantification of RNA

molecules are critical for studying their biology and function.
Several studies have employed RNA fluorescence in situ hybridiza-
tion (RNA-FISH) [145] for the quantification and localization of
circRNAs, including CiRS-7/CDR1as [146]. RNA-FISH has also been
used to confirm the colocalization of circRNA and target miRNAs,
such as CiRS-7/CDR1as and miR-135a in bladder cancer [147],
circRHOBTB3 and miR-654-3p in gastric cancer cells [148],
circFAM114A2 and miR-762 in urothelial bladder carcinoma
[149]. However, probe designs that can specifically and uniquely
target the back-splice junctions of circRNAs can often be
challenging, making the overall technique time-consuming and
costly for an efficient signal detection.
Advances in the field of circRNA research have paved the way for

a number of novel assays with increased sensitivity and specificity
that appear to detect more accurately low abundance circRNAs and
hold great promise for their efficient annotation in the future [150].
Among several techniques, the recent development of reverse
transcription-droplet digital polymerase chain reaction (RT-ddPCR)
demonstrates the ability to provide absolute copy numbers and to
detect low abundance circRNAs based on partitioning nucleic acids
into nanoliter-sized droplets containing the target sequence for PCR
amplification [151]. This approach has been successfully employed
to profile circRNA levels in plasma. The method has led to the
positive correlation between plasma levels of hsa_circ_0001017 and
hsa_circ_0061276 with the overall survival of gastric cancer patients
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[152]. Particularly suitable for profiling circRNAs is the rolling cycle
amplification (RCA) method in which a primer can bind to the
junction site on the target circRNA and allow the reverse
transcriptase to begin rolling cycle amplification. This produces a
single-stranded cDNA of a long-chain of hundreds of repetitive
fragments that amplify the signal [153]. A similar strategy based on
pairs of stem-loop primers (SLPs) that recognize the junction
sequence of circRNAs and form a double stem-loop DNA structure,
can induce double exponential amplification (LAMP) and specifi-
cally detect circRNAs from linear RNAs [154].

Methods for the functional characterization of circRNAs
Beyond efficient detection, studies aimed at assessing circRNA
function require particular attention. Albeit at different levels,
circRNAs and linear RNAs transcribed at the same genomic locus
are normally co-expressed. This makes gain- and loss-of-function
studies particularly challenging since they are based on targeting
the original loci and are therefore likely to affect the cognate
linear RNAs too. In terms of selective degradation of circRNAs, of
particular note is the newly developed RNA-guided, RNA-targeting
Cas13 system (CRISPR–Cas13) [155, 156], which has been shown to
be far more efficient and specific in circRNA knockdown,
compared to standard RNAi approaches [157, 158]. By designing
guide RNAs that target sequences spanning the back-splice
junction, CRISPR–Cas13 can knock down circRNAs, without any
impact on related linear mRNAs. This has enabled the efficient and
specific knockdown of the oncogenic circFAM120A, which
normally promotes cell proliferation by efficiently favoring the
translation of its cognate linear mRNA (FAM120A) by competitively
binding to IGF2BP2 (a translation inhibitor) [159]. Strategies based
on expression vectors that drive almost exclusively circular and
not linear exons [48] by employing flanking introns with base-
pairing repeats, have also proven to be, with appropriate controls,
hugely advantageous in studying new circRNA functions [62]. A
successful genetically engineered mouse model harboring cir-
cRNA expression constructs, has recently been employed to study
circRNAs in vivo in the context of melanoma [160].
Cutting-edge methodologies, such as the new Oxford Nanopore

technology, are particularly suitable for long-read sequencing and
may further help in providing information about the entire
sequence of circRNAs [161]. Furthermore, the use of NanoString
platform offers more accurate detection and quantification of
individual circRNAs by using capture and reporter color-coded
probes that jointly recognize the back-splice junction without the
need for amplification or reverse transcription [162, 163]. For a
detailed description of methods used to study and characterize
circRNA functions and mechanisms of action, we recommend
three excellent recent reviews [164–166].

CIRCRNAS AS POWERFUL BIOMARKERS
CircRNAs have been linked to a variety of physiological conditions
and cell biology features including stemness and pluripotency
[44, 167–172] and are therefore potentially implicated in inducing
and sustaining cancer development. Moreover, circRNAs have
been correlated with some clinical characteristics such as the
histological grade, size, metastasis stage and aggressiveness of
cancer [163, 173].
Growing evidence suggests that circRNAs can be used as

potential biomarkers for early-cancer detection, clinical diagnosis,
prognosis and even used in monitoring response to therapy
[174–177] (Fig. 5). Their unique expression patterns, molecular
stability, specificity and broad distribution across human body
compartments, make circRNAs accessible for relatively easy
detection and quantification by liquid biopsy in body fluids,
including blood, sputum and urine [81, 178]; the latter are more
preferable and effective than tissue biopsy due to the minimal
invasiveness and feasibility of repetitive sampling.

CircRNAs as prognostic biomarkers
Some circRNAs have shown a strong prognostic potential
including CiRS-7/CDR1as which has been found highly abundant
in intratumoral stromal cells, extensively used as prognostic factor
in carcinomas of colon [179], lung [180] and breast [181]. A strong
potential for predicting gastric cancer prognosis has also been
proposed for circERBB2, whose plasma levels in pre-operative
gastric cancer patients significantly correlate with the occurrence
of lymph node metastasis [177]. Whereas the detection of tumor-
suppressor circRNAs such as circLARP4 has been associated with
good prognosis in several different cancers [182–185], the
detection of oncogenic circUBAP2 has been linked to unfavorable
prognosis in HCC, breast cancer and osteosarcoma through the
sponging of different miRNAs [159, 186, 187].
CircRNA panels and/or signatures appear to have a more robust

prognostic value than single circRNAs. RNA-seq analysis of frozen
tissues collected from post-operation has allowed to profile
differential circRNA expression between patients with and without
recurrence in four circRNA-based signatures (named circScores),
thereby grouping colon cancer patients based on high- or low-risk
of recurrence [188]. According to the standard of care for younger
patients developed by the Nordic Lymphoma Group, the
introduction of cytarabine-containing chemoimmunotherapy fol-
lowed by autologous stem cells transplant increased mantle-cell
lymphoma (MCL) patient’s survival. However, treated MCL patients
are likely to experience continuous long-term relapse. Analysis on
a cohort of samples from two clinical trials conducted by the
Nordic Lymphoma Group, has allowed to profile circRNA
expression patterns and help with the identification of high-risk
disease patients treated with cytarabine-containing chemoimmu-
notherapy and autologous stem cells transplant [163].

CircRNAs as diagnostic biomarkers
CircRNA tissue and cell-type specificity allow better correlation
with specific pathologies, including the ability to distinguish
between cancer subtypes [81, 189–192] and clinical stages. This is
particularly beneficial in early-cancer diagnosis and increases the
chances of patient survival. In this regard, a group of researchers
have developed a unique circRNA test that detects five circRNAs in
urine-derived extracellular vesicles and has the potential to
distinguish high-grade prostate cancer from benign prostatic
hyperplasia [193]. CircRNA expression profiles could also help with
the classification of breast cancer subtypes into HER2-positive,
estrogen receptor-positive and triple negative breast cancers
[191]. Similarly, the detection of low and high level of expression
of circACVR2A and circCCNB1 respectively, has enabled the
distinction between adenocarcinoma and squamous cell carci-
noma in NSCLC [192]. Plasma-based circRNAs assays with high
detection accuracy have also allowed the distinction of HCC
patients with hepatitis B virus infection from healthy individuals
and patients with chronic hepatitis B and liver cirrhosis [194].
Exosome-derived circRNAs are also useful diagnostic biomarkers

depending on relative expression, stability, and exosome coupled
targeted delivery pathways [40]. For instance, exosomal circRNAs
enriched in serum have shown high potential for the early
diagnosis of colorectal cancer [40]. An early diagnosis of the most
frequent and deadly human brain cancer, glioblastoma multi-
forme, could instead be possible by monitoring downregulated
levels of exosome-derived circHIPK3 and circSMARCA5 [195].

CircRNAs as both prognostic and diagnostic biomarkers
Some circRNAs could offer a double utility as both prognostic and
diagnostic biomarkers. For example, circ0001785 not only shows
higher diagnostic efficiency for breast cancer detection than the
two most widely investigated biomarkers serum carcinoembryonic
antigen (CEA) and cancer antigen 15-3 (CA15-3) [196], but also
possesses strong prognostic potential in predicting the histologi-
cal grade, TNM (Tumor, Node, Metastasis) stage and distant
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metastasis in breast cancer progression [196]. Similarly, cir-
cLDLRAD3 has been proposed as a promising biomarker in both
the diagnosis and prognosis of pancreatic cancer since it was
found to be elevated in the plasma of patients and strongly
correlate with venous and lymphatic invasion [197].

CircRNAs as predictive biomarkers for cancer therapy
The efficacy of cancer therapy is often limited by intrinsic and
acquired resistance. CircRNA expression has been proven to vary
in response of tumor cells to chemotherapy, radiotherapy and
immunotherapy through several mechanisms, thereby serving as
a valuable indicator for clinicians to modify cancer patient
treatment. For instance, circCRIM1 competitively binds to miR-
422a and prevents the inhibitory effects of miR-422a on its target
gene FOXQ1, which ultimately leads to metastasis in nasophar-
yngeal carcinoma, EMT and docetaxel chemoresistance [198]. In
endometrial cancer, resistance to paclitaxel, is mediated by a key
oncogenic circRNA (circ0007534) which sponges miR-625 and
subsequently increases the expression of the miR-625 target gene
ZEB2, a master regulator of EMT [199]. Interestingly, prostate
cancer therapy with androgen receptors inhibitors such as
enzalutamide, dramatically changes the expression of a pool of
circRNAs in enzalutamide-resistant cells, opening new scenarios
for understanding resistance mechanisms and offering novel
opportunities for treating prostate cancer patients [200].
Given their circulating nature, exosomes can also transmit drug

resistance between heterogeneous populations of tumor cells.

CircRNAs with altered expression in drug-resistant cells can be
transferred to drug-sensitive ones. For example, the exosomal
circZNF91 functions as an exosomal cargo mediating the signal
transmission between hypoxic and normoxic tumor cells in pancreatic
cancer and promotes chemoresistance [201]. In a similar vein, the
exosome-associated circ0032821 promotes oxaliplatin resistance in
gastric cancer (GC) cells by regulating SOX9 via miR-515-5p [202].
Binding of the cell receptor PD-1 to its programmed death-

ligand 1 (PD-L1) on tumor cells, activates downstream signaling
pathways and inhibits T cell activation. Novel antibody inhibitors,
such as anti-PD-1 and anti-PD-L1, are designed to restore the host
antitumor immune response effectively, with an overall manage-
able toxicity compared to chemotherapy and radiotherapy.
However, the development of resistance to immune checkpoint
inhibitors (ICIs) is one of the major limitations in using novel anti-
PD-1 and anti-PD-L1 therapies for treating cancer. CircRNAs play
an important role in acquiring resistance features to these
therapies by modulating the expression of key cancer pathways
and associated immune populations from the tumor microenvir-
onment. For example, in NSCLC circFGFR1 induces resistance to
PD-1 antibodies by interacting with miR-381-3p and upregulating
its target CXCR4, responsible for NSCLC progression and resistance
[203]. In distant metastatic lesions and gastric cancer tissues,
overexpressed circDLDG1 sponges miR-141-3p and increases the
expression of CXCL12 which in turn promotes EMT, proliferation,
metastasis and resistance to anti-PD-1 inhibitors [204]. Another
anti-PD-1 resistance-associated circRNA, is circUHRF1 which is

Fig. 5 CircRNAs as biomarkers and therapeutic targets in human cancer. An up-to-date summary of circRNAs that show promise as clinical
biomarkers (outmost circle) and/or as therapeutic targets (syringe icons pointing towards the chart), associated with different types of cancer.
Created with BioRender.com.
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generally overexpressed in HCC tissue, cell lines, and linked with
poor prognosis. CircUHRF1 is secreted via exosomes by HCC cells
into the surrounding microenvironment and by sequestering and
preventing miR-449c-5p binding to the checkpoint target gene “T
cell immunoglobulin and mucin domain 3” (TIM-3), triggers natural
killer (NK) cell dysfunction, immune evasion and resistance to anti-
PD-1 immunotherapy [205].

THERAPEUTIC APPLICATION OF CIRCRNAS
The dysregulation of circRNAs can drive tumorigenesis and
metastasis in various cancers, making them promising targets
for cancer treatment (Fig. 5). Several therapeutic approaches
aimed at modifying circRNA expression are currently under
investigation. Preclinical studies in animal models are mostly
focused on gain- or loss-of-function strategies through circRNA
overexpression or knockdown.

Therapeutic applications based on circRNA knockdown
RNA interference (RNAi) accomplished by cytoplasmic delivery of
small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs)
[206] has been used to silence single or multiple circRNAs in vivo.
For example, treatment with shRNAs targeting circCUX1, a circRNA
generally overexpressed in neuroblastoma (NB) that is able to
promote cell proliferation and invasion via sponging miR-16-5p,
has been shown to reduce tumor growth in mice efficiently [207].
Repression of tumorigenesis in mice has also been shown upon
the silencing of circAGO2 [208], a circRNA that is up-regulated in
several cancers and associated with poor prognosis. CircAGO2
interacts with HuR protein to facilitate HuR activation and
enrichment on the 3’ UTR of target mRNAs, which reduces the
accessibility for AGO2 binding and AGO2/miRNA-mediated silen-
cing to mRNAs associated with cancer progression [208].
Single-stranded DNA antisense oligonucleotides (AONs) have also

been employed to inhibit selectively or degrade oncogenic circRNAs.
For example, AONs targeting circLONP2, which enhances metastasis
and invasiveness of colorectal cancer cells by favoring the maturation
and the exosomal dissemination of miR-7, dramatically reduce the
extent of metastasis to foreign organs in vivo [209].
The delivery of RNAi molecules can be better accomplished

with the use of nanoparticles. Gold nanoparticles (AuNPs),
commonly associated with a linker such as PEG or polyethyleni-
mine, can be conjugated with siRNAs, shRNAs or AONs and ensure
a more efficient drug delivery in animal studies thanks to their
high stability, and easily modifiable surface. Delivery of AuNPs
with siRNAs targeting circDNMT1 has been shown to suppress
breast tumor growth successfully as well as enhancing the survival
in mice [210]. A similar approach with AuNP conjugated with
AONs aimed to block the binding sites on circCcnb1 for both
Ccnb1 and Cdk1, has also shown to inhibit tumor growth and
promote mouse survival [211].
Translated circRNAs with important oncogenic roles in cancer

can also be targeted by specific drug inhibitors. This is the case of
HER2-103aa which plays a role in tumorigenesis and shares
sequence similarity with HER2 CR1 domain (the domain that is
targeted by pertuzumab). Treatment with pertuzumab has proven
to reduce significantly the tumorigenicity of both circHER2 and its
encoded 103 amino acids polypeptide (HER2-103aa) expressing
cells in vivo [212].

Therapeutic applications based on circRNA overexpression
CircRNA expression can be increased by direct delivery into cells. This
approach is particularly effective in antagonizing oncogenic miRNAs
by exploiting the property of circRNAs to act as ceRNAs/miRNA
sponges. To obviate possible degradation effects, more efficient
systems have adopted cassettes cloned inside lentivirus or adeno-
associated virus vectors [213]. However, these vectors may lead to
unforeseen adverse effects by producing simultaneously a substantial

number of unnecessary cognate mRNA molecules. Alternative
delivery of circRNA expression cassettes can be achieved through
encapsulation within lipid and/or polymer nanoparticles. To illustrate
the latter, a group of researchers ectopically overexpressed circFoxo3
by using plasmid-PEG- AuNPs target to cancer cells and demon-
strated that circFoxo3 triggers stress- induced apoptosis, inhibition of
tumor xenograft growth in vivo and increases overall survival [117].

Therapeutic strategies based on circRNAs in response to
cancer treatment failure
Gain- or loss-of-function-based therapeutic strategies targeting
crucial circRNAs associated with cancer therapy resistance have also
been investigated to overcome treatment failure. CircRNAs, such as
CircRNA-SORE, have been shown to interfere with the activity of
tyrosine kinase inhibitors, such as sorafenib. Upregulation of
circRNA-SORE in sorafenib-resistant HCC cells ensures the cytoplas-
mic retention of the oncogenic protein YBX1 and prevents its
ubiquitination and degradation by PRP19 in the nucleus and
thereby favors resistance to sorafenib. Moreover, circRNA-SORE is
loaded into exosomes that are trafficked from sorafenib-resistant
cancer cells to sensitive cancer cells, and this helps to spread the
resistance phenotype. By treating mice bearing subcutaneous
sorafenib-resistant patient-derived xenografts with siRNAs targeting
circRNA-SORE, researchers have demonstrated that the responsive-
ness to sorafenib treatment can be restored [214]. In a similar vein,
the 174 amino acids long peptide (AKT3-174aa) encoded by
circAKT3 has been shown to have important anti-tumorigenic roles
and to be negatively involved in radiotherapy resistance. Mechan-
istically, AKT3-174aa competes with active phosphorylated PDK1,
reduces AKT-thr308 phosphorylation, and acts as a negative
regulator modulating PI3K/AKT signal intensity. This reduces cellular
proliferation and antagonizes radiotherapy resistance. Downregula-
tion of circAKT3 in glioblastoma causes the subsequent decrease in
levels of its associated peptide and the development of a malignant
glioblastoma phenotype. The injection of AKT3-174aa in mice
models appears to restore glioblastoma cell sensitivity to radio-
therapy [215]. Likewise, low levels of circ0025202 affecting the miR-
182-5p/FOXO3a axis have been associated with the resistance of
one of the most commonly used hormone therapy for hormone
receptor (HR)-positive breast cancer patients (tamoxifen). In vivo
experiments showed that overexpression of circ0025202 could
shrink tumor growth and enhance tamoxifen efficacy [216]. Lastly,
studies have revealed that circRNA17 can downregulate the
expression of an androgen receptor splice variant 7 via sponging
of one of its 3’ UTR targets, miR-181c-5p [217]. CircRNA17
overexpression in in vivo mouse model xenografted with
enzalutamide-resistant cells, has shown to restore sensitivity to
enzalutamide, used for prostate cancer treatment [217].
As discussed earlier, circUHRF1 plays a crucial role in sustaining

anti-PD-1 resistance in HCC [218]. Using an in vivo xenograft
model researchers have shown that the therapeutic suppression
of circUHRF1 via shRNAs modulates the response to anti-PD-1
treatment and improves overall survival. This may prove an
effective method of reversing resistance for ICIs by acting both on
tumor cells and on associated dysfunctional immune microenvir-
onment [218]. Immuno-suppression and development of anti-PD-
1 therapy resistance in HCC have also been associated with
circMET via the miR-30-5p/snail/DPP-4 axis. Treatment with
sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor generally
used to treat type 2 diabetes, seems to obviate the resistant
effects induced by the circMET. A combination of both sitagliptin
and anti-PD-1 molecules has been shown to improve antitumor
immunity in immunocompetent mice and is likely to be more
effective in treating patients with HCC [219].
Further research is needed before specific circRNAs can be

effectively exploited as clinically useful biomarkers or as ther-
apeutic targets for cancer treatment. On-going studies are
currently assessing the potential therapeutic benefits for cancer
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patients by bringing circRNA biology into clinical practice. Table 3
provides a snapshot of the range of projects currently in progress.

CONCLUDING REMARKS, PERSPECTIVES AND A NOTE OF
CAUTION
As sequencing approaches improve in terms of depth, accuracy,
and read length [220], the annotation of new uncharacterized
circRNAs, especially low abundance ones, continues to grow.
Beyond their detection, a careful investigation to distinguish what
is a splicing artifact from a functional circRNA remains essential.
Appropriate controls and accurate validation using multiple
approaches remain crucial to rule out false positive circRNAs. To
tackle these challenges a series of guidelines in the field of
circRNAs research have recently been published [221].
Many open questions regarding their biogenesis and biological

functions, remain unanswered. It remains unclear whether or not
they are exclusively co- or post-transcriptionally generated, how
they are ultimately degraded, to what extent their structures
might confer functional differences compared to their linear RNA
counterparts and what proportion are translated into proteins.
Moreover, many functional aspects of circRNAs might have not
been uncovered yet due to the limitations of current approaches.
From a clinical perspective, the advent of circRNA research has

opened up new exciting possibilities in cancer research, for better
diagnosis and novel therapies. CircRNAs have been associated with
a variety of physiological conditions and cell biology features
including stemness and pluripotency. It has also been demonstrated
that they have potential utility as valid biomarkers for early-cancer
detection, diagnosis, prognosis and even prediction of response to
therapies. However, how they impact cancer diagnosis and
prevention remains debatable and sometimes even contradictory.
CircRNAs often participate in more than one molecular mechanism
in many tissues and diseases; targeting circRNAs therapeutically
might lead to off-target effects in non-cancerous cells and tissue,
making their clinical translation particularly challenging. Moreover,
the discovery of multiple miRNAs sponged by the same circRNAs in
different cancer types suggests that their contribution to a specific
cancer phenotype is likely to be context-dependent. Additional
related controversies surround the stoichiometry
circRNA–miRNA–mRNA and the role of circRNAs as competitive
endogenous RNAs [222, 223]. This is poorly understood in
physiological conditions suggesting that the number of circRNAs
able to effectively contribute to tumorigenesis by sponging miRNAs
could be far lower than initially proposed. Measuring correct copy
numbers and circRNA/miRNA ratio in cells and tissues remains
fundamental in studying circRNAs and a necessary step required to
understand how they function in normal development and disease.
The integration of artificial intelligence (AI) and circRNA transcrip-

tome analysis holds great promise for advancing our understanding
of this complex biological system, undoubtedly facilitating diagnostics
and therapeutics in various pathological contexts including cancer.
New approaches based on AI might help to identify shared and
unique characteristics in features of circRNAs, such as their expression
levels, alternative splicing patterns, co-expression networks, or specific
structural motifs, all in different conditions. However, the success of
using circRNA transcriptome data combined with AI for building
classifiers will rely on high-quality data generation, careful experi-
mental design, and rigorous computational analysis. The interpret-
ability of AI models in this context remains challenging, as circRNA
properties and functions are still not fully elucidated.
In summary, there is undoubtedly tremendous potential for

circRNAs to have a significant impact on cancer diagnosis and
treatment. The initial studies of circRNAs have necessarily focused
on their discovery and characterization; what needs to follow in
the near future is more detailed biological validation with patient
samples in the context of clinical research. These experiments will
need to be further corroborated with detailed functional studies in

suitable model organisms. Once a more complete understanding
of their functional biology is obtained, it will be possible to exploit
the full potential of circRNAs in the clinic.
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