Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palmitoyl acyltransferase ZDHHC7 inhibits androgen receptor and suppresses prostate cancer

Abstract

The hormonal transcription factor androgen receptor (AR) is a master regulator of prostate cancer (PCa). Protein palmitoylation, which attaches a palmitate fatty acid to a substrate protein, is mediated by a class of 23 ZDHHC (Zinc-Finger DHHC motif)-family palmitoyltransferases. Although palmitoylation has been shown to modify many proteins and regulate diverse cellular processes, little is known about ZDHHC genes in cancer. Here we examined ZDHHC family gene expression in human tissue panels and identified ZDHHC7 as a PCa-relevant member. RNA-seq analyses of PCa cells with ZDHHC7 de-regulation revealed global alterations in androgen response and cell cycle pathways. Mechanistically, ZDHHC7 inhibits AR gene transcription and therefore reduces AR protein levels and abolishes AR signaling in PCa cells. Accordingly, ZDHHC7 depletion increased the oncogenic properties of PCa cells, whereas restoring ZDHHC7 is sufficient to suppress PCa cell proliferation and invasion in vitro and mitigate xenograft tumor growth in vivo. Lastly, we demonstrated that ZDHHC7 is downregulated in human PCa compared to benign-adjacent tissues, and its loss is associated with worse clinical outcomes. In summary, our study reveals a global role of ZDHHC7 in inhibiting androgen response and suppressing PCa progression and identifies ZDHHC7 loss as a biomarker for aggressive PCa and a target for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZDHHC7 is a PCa-relevant ZDHHC family gene.
Fig. 2: ZDHHC7 overexpression attenuates androgen response and cell cycle in PCa cells.
Fig. 3: ZDHHC7 knockdown promotes androgen response and cell cycle in PCa cells.
Fig. 4: ZDHHC7 does not alter AR protein localization but reduces total AR protein levels.
Fig. 5: ZDHHC7 regulates AR, AR-V7, and their target gene transcription.
Fig. 6: ZDHHC7 inhibits PCa cell growth and invasion in vitro and in vivo.
Fig. 7: ZDHHC7 is downregulated in PCa, and its low expression predicts a poor prognosis.

Similar content being viewed by others

Data availability

All next-generation sequencing data have been uploaded to the GEO database under GSE222592.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014;33:2815–25.

    Article  CAS  PubMed  Google Scholar 

  4. Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 2007;28:778–808.

    Article  CAS  PubMed  Google Scholar 

  5. Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 2002;168:9–12.

    Article  PubMed  Google Scholar 

  6. Chamberlain LH, Shipston MJ. The physiology of protein S-acylation. Physiol Rev. 2015;95:341–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem Rev. 2018;118:919–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zmuda F, Chamberlain LH. Regulatory effects of post-translational modifications on zDHHC S-acyltransferases. J Biol Chem. 2020;295:14640–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER. A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem. 2007;282:22278–88.

    Article  CAS  PubMed  Google Scholar 

  10. Yang X, Guo Z, Sun F, Li W, Alfano A, Shimelis H, et al. Novel membrane-associated androgen receptor splice variant potentiates proliferative and survival responses in prostate cancer cells. J Biol Chem. 2011;286:36152–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou B, Liu L, Reddivari M, Zhang XA. The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res. 2004;64:7455–63.

    Article  CAS  PubMed  Google Scholar 

  12. Di Vizio D, Adam RM, Kim J, Kim R, Sotgia F, Williams T, et al. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle. 2008;7:2257–67.

    Article  CAS  PubMed  Google Scholar 

  13. Cai H, Smith DA, Memarzadeh S, Lowell CA, Cooper JA, Witte ON. Differential transformation capacity of Src family kinases during the initiation of prostate cancer. Proc Natl Acad Sci USA. 2011;108:6579–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim S, Yang X, Yin A, Zha J, Beharry Z, Bai A, et al. Dietary palmitate cooperates with Src kinase to promote prostate tumor progression. Prostate. 2019;79:896–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fiorentino M, Zadra G, Palescandolo E, Fedele G, Bailey D, Fiore C, et al. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Lab Invest. 2008;88:1340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Piano M, Manuelli V, Zadra G, Otte J, Edqvist PD, Ponten F, et al. Lipogenic signalling modulates prostate cancer cell adhesion and migration via modification of Rho GTPases. Oncogene. 2020;39:3666–79.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Thomas R, Srivastava S, Katreddy RR, Sobieski J, Weihua Z. Kinase-inactivated EGFR is required for the survival of Wild-Type EGFR-expressing cancer cells treated with tyrosine kinase inhibitors. Int J Mol Sci. 2019;20:2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep. 2018;19:e46666.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen B, Zheng B, DeRan M, Jarugumilli GK, Fu J, Brooks YS, et al. ZDHHC7-mediated S-palmitoylation of Scribble regulates cell polarity. Nat Chem Biol. 2016;12:686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pedram A, Razandi M, Deschenes RJ, Levin ER. DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors. Mol Biol Cell. 2012;23:188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeste-Velasco M, Mao X, Grose R, Kudahetti SC, Lin D, Marzec J, et al. Identification of ZDHHC14 as a novel human tumour suppressor gene. J Pathol. 2014;232:566–77.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao JC, Yu J, Runkle C, Wu L, Hu M, Wu D, et al. Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res. 2012;22:322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based human protein Atlas. Nat Biotechnol. 2010;28:1248–50.

    Article  CAS  PubMed  Google Scholar 

  24. Rossin A, Durivault J, Chakhtoura-Feghali T, Lounnas N, Gagnoux-Palacios L, Hueber AO. Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability. Cell Death Differ. 2015;22:643–53.

    Article  CAS  PubMed  Google Scholar 

  25. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl J Med. 2014;371:1028–38.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA, et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest. 2010;120:2715–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu D, Zhan Y, Qi Y, Cao B, Bai S, Xu W, et al. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res. 2015;75:3663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim J, Lee Y, Lu X, Song B, Fong KW, Cao Q, et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 2018;25:2808–20.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17:443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin HJ, Zhao JC, Wu L, Kim J, Yu J. Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat Commun. 2014;5:3972.

    Article  CAS  PubMed  Google Scholar 

  31. Xu B, Song B, Lu X, Kim J, Hu M, Zhao JC, et al. Altered chromatin recruitment by FOXA1 mutations promotes androgen independence and prostate cancer progression. Cell Res. 2019;29:773–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lu X, Fong KW, Gritsina G, Wang F, Baca SC, Brea LT, et al. HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nat Genet. 2022;54:670–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fong KW, Zhao JC, Lu X, Kim J, Piunti A, Shilatifard A, et al. PALI1 promotes tumor growth through competitive recruitment of PRC2 to G9A-target chromatin for dual epigenetic silencing. Mol Cell. 2022;82:4611–26.e7.

    Article  CAS  PubMed  Google Scholar 

  34. Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, et al. Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 2021;7:eabe2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fong KW, Zhao JC, Song B, Zheng B, Yu J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun. 2018;9:5007.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li S, Fong KW, Gritsina G, Zhang A, Zhao JC, Kim J, et al. Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res. 2019;79:2580–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the DOD grants PC160759 (to XW) and PC160759P1 (to JY) and Prostate Cancer Foundation 2017CHAL2008 (to JY, JCZ). We thank Baoen Chen (MGH), Carla Guarino (MGH), Viriya Keo (NU), and Ka-Wing Fong (NU) for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

JY and ZL conceived the project. ZL, SA, ST, XL, ZT, and HS designed and performed the experiments. XD performed TMA of ZDHHC7. JCZ conducted bioinformatics and statistical analysis. ZL, SA, JCZ, and JY generated the figures and wrote the manuscript. XW provided critical discussions. All authors read the manuscript.

Corresponding author

Correspondence to Jindan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Agarwal, S., Tan, S. et al. Palmitoyl acyltransferase ZDHHC7 inhibits androgen receptor and suppresses prostate cancer. Oncogene 42, 2126–2138 (2023). https://doi.org/10.1038/s41388-023-02718-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02718-2

Search

Quick links