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Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant
activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor
prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic
inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis,
and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by
interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this
review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis.
We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting
SRC in pancreatic cancer.
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PANCREATIC DUCTAL ADENOCARCINOMA (PDAC)
PDAC is an aggressive malignant disease that accounts for more
than 90% of pancreatic cancer cases [1]. Due to nonspecific clinical
symptoms, most patients are diagnosed at advanced stages of the
disease, and are not eligible for surgery [2, 3]. Systemic
chemotherapy is commonly employed as the first-line treatment
in patients with nonresectable tumors; however, durable
responses are observed in <30% of cases [4, 5]. Furthermore,
immunotherapies have failed to translate into meaningful
improvements in a majority of PDAC patients due to the presence
of a highly immunosuppressive and desmoplastic tumor micro-
environment [6–8]. Given the poor prognosis and limited
treatment options for PDAC, a better understanding of key
signaling pathways and molecules involved in tumor initiation,
development, and metastasis is crucial to guide the use of existing
therapies and identify new drug targets.

SRC
Francis Peyton Rous was awarded the Nobel Prize in 1966 for his
discovery of the transmissible avian Rous sarcoma virus (RSV),
which provided the first evidence of virally-mediated tumorigen-
esis [9]. Subsequently, it was shown that the genome of RSV
encoded a tyrosine kinase referred to as viral SRC (v-Src), which
stimulated uncontrolled proliferation in host cells [10, 11]. In 1979,
J. Michael Bishop and Harold Varmus discovered that normal
chicken cells possessed a cellular homolog of v-Src referred to as
cellular SRC (c-Src) that shared striking resemblance to v-Src [10].
Importantly, RSV had integrated a genomic sequence encoding a
truncated version of c-Src that lacked the regulatory carboxy-
terminal tail. Thus, unlike its cellular counterpart c-SRC, which was

referred to as a “proto-oncogene”, v-SRC remained constitutively
active [12]. These insights led to a paradigm shift in oncology by
demonstrating that mutations in tightly regulated proteins
encoded by proto-oncogenes can also promote tumor develop-
ment, with or without viral involvement.

SRC structure and activation
c-SRC (SRC) belongs to a family of nine non-receptor tyrosine
kinases collectively referred to as the SRC family kinase (SFK),
which comprises three distinct groups based on the expression
pattern of individual members. The first group (SRC, FYN, and YES)
are ubiquitously expressed. The second group (HCK, BLK, FGR, LCK,
YRK, and LYN) are primarily expressed in hematopoietic cells,
whereas the third group (FRK) is predominantly expressed on
epithelial cells [13].
SFKs are comprised of a unique amino-terminal SRC Homology

4 domain (SH4), followed by conserved regulatory SH3 and SH2
domains, a flexible linker, a SH1 protein kinase domain containing
a tyrosine residue in the activation loop (YA), and a C-terminal tail
containing a negative regulatory tyrosine residue (YT) (Fig. 1) [14].
The SH4 domain contains myristoylation and palmitoylation

sites that anchor SFKs to the inner leaf of the cytoplasmic
membrane (Fig. 1). The SH3 domain is a small protein domain (61
amino acid residues in SRC), which is folded into β-barrels of five
antiparallel strands. The SH3 domain mediates protein–protein
interactions by binding to proline-rich motifs of client proteins
[15], and is necessary for substrate recognition and to some extent
regulation of kinase activity [16, 17]. Meanwhile, the SH2 domain
(97 amino acid residues in SRC) is comprised of a β-sheet flanked
by opposing α-helices [18]. The SH2 domain has a conserved
arginine-containing recognition pocket that binds to short
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phosphotyrosine motifs [18]. Lastly, the SH1 catalytic domain
contains the active site of the kinase domain nestled between a
small N-lobe and a large C-lobe. The N-lobe consists of five-
stranded antiparallel β-sheets and a regulatory αC-helix, while the
C-lobe contains α-helical segments [19].
SFKs exist in dynamic equilibria between active and inactive

conformations. The inactive ‘closed’ conformation is maintained
by two intra-molecular associations (Fig. 2). This closed conforma-
tion primarily results from the association of the SH2 domain to
the phosphorylated YT residue, and is further strengthened by
binding of the SH3 domain to the linker separating the SH2 and
SH1 domains [20]. Phosphorylation of YT is tightly regulated by
members of the C-terminal SRC kinase (CSK) family, including CSK
and CHK [14, 20]. Since v-SRC lacks the C-terminal negative
regulatory segment containing the YT residue, it is constitutively
active and able to induce cellular transformation [14].
Activation of SFKs is mediated by dephosphorylation of YT and

auto-phosphorylation of YA [21]. Dephosphorylation of YT by
phosphatases such as protein tyrosine phosphatase (PTP)1, and
SH2-containing phosphatases (SHP) 1 and SHP2 results in an
‘open’ conformation that facilitates the binding of the SH2 and
SH3 domains with their corresponding ligands [14]. Subsequently,
auto-phosphorylation of YA results in full SFK activation [22].

Mechanisms underpinning aberrant SRC signaling in cancer
SRC mediates a wide range of signaling pathways that play a
pivotal role in normal cellular processes, including proliferation,

adhesion, angiogenesis, and migration (Fig. 3). Given the
contribution of these features to some of the “hallmarks of
cancer,” it is unsurprising that aberrant activation or expression of
SRC is observed in many tumor types and correlates with poor
patient outcomes. However, while activating mutations in SRC are
observed in <2% of pancreatic cancer patients [23–25], elevated
expression, and/or activation of SRC in PDAC confers a weakly
oncogenic outcome [26–28].
Aberrant activation of SRC can result from several mechanisms,

including amplification of upstream signaling pathways, loss of
negative regulation, and impaired degradation. Indeed, SRC
directly interacts with a variety of cellular factors, including signal
transducers and activators of transcription (STAT) proteins, cyclins,
and tyrosine kinases (e.g., colony-stimulating factor 1 receptor
(CSF1R), platelet derived growth factor receptor (PDGFR), epider-
mal growth factor receptor (EGFR), human epidermal growth
factor receptor (HER), and focal adhesion kinase (FAK)) [29]. FAK
signaling enables the fibrotic and immune suppressive tumor
microenvironment of PDAC, and its elevated expression is
associated with poor overall survival [30, 31]. Following integrin
engagement or ligand stimulation, FAK forms a complex with SRC
and triggers the activation of downstream pathways involved in
tumor cell migration, invasion, survival, and immune suppression
[27, 30, 32, 33]. Moreover, amplification of genes associated with
SRC effector networks such as PI3K/AKT/mTor and FAK are
reported in 17% and 6% of pancreatic tumors, respectively
[23–25], while aberrant expression of integrin signaling

Fig. 1 Structure of SRC. Schematic of (A) human c-SRC, (B) chicken c-SRC and (C) chicken v-SRC. Human c-SRC is comprised of a 14-carbon
myristic acid moiety attached to the N-terminal SRC Homology 4 domain (SH4), a unique domain, followed by an SH3 and SH2 domain, a
linker, a SH1 protein kinase domain containing a tyrosine residue at Tyr419 (YA; Tyr416 in chickens), and a C-terminal negative regulatory tail
containing a tyrosine residue at Tyr530 (YT; Tyr527 in chickens). Chicken v-SRC lacks the C-terminal segment containing the YT residue, which
renders it constitutively active and capable of inducing cellular transformation. Figure created in Biorender.
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components that activate SRC are observed in 67% of pancreatic
tumors [34]. Collectively, these results highlight a mechanism by
which cooperation of SRC with its binding partners may promote
feed-forward loops to reinforce its kinase activity.
Aberrant SRC activity may also arise due to disruption to

proteins that regulate its function. Gain-of-function mutations in
SHP2 leads to increased SRC activation and tumor development in
preclinical models [35–37], while reduced expression of CSK
correlates with enhanced SRC activity in cancer cells [38]. Another
possible mode of increased SRC activation includes altered protein
stability, which may occur due to deregulation of the ubiquitin
ligase c-CBL that mediates proteasomal degradation of SRC
[39, 40].

EFFECTS OF TUMOR CELL-INTRINSIC SRC ACTIVITY IN
PANCREATIC CANCER
Tumor cell-intrinsic mechanisms by which SRC signaling facilitates
PDAC development and progression include enhancing cancer
cell growth and survival, promoting stemness, induction of
metabolic reprogramming, facilitating tumor invasion and metas-
tasis, and mediating chemoresistance (Fig. 3).

Cancer cell growth and survival
RAS/RAF/MEK/ERK signaling. Activating mutations in KRAS are a
hallmark of pancreatic cancer, and are observed in approximately
95% of patients [41, 42]. Under steady-state conditions, SRC
phosphorylates RAS, and triggers downstream activation of the
MAPK signaling cascade to stimulate cellular proliferation,
differentiation, and survival [43]. Notably, pancreas-specific
oncogenic KrasG12D expression and deletion of the SRC negative

regulator CSK accelerates PDAC development in mice compared
to littermates that express KrasG12D and wild-type levels of SRC
[44].

PI3K signaling. SRC regulates PI3K signaling by directly phos-
phorylating the p85 subunit of PI3K [45], and by inhibiting the
PI3K negative regulatory phosphatase and tensin homolog (PTEN)
[46]. This results in downstream phosphorylation of AKT, which
enhances the growth and survival of pancreatic cancer cells [47].

STAT3 signaling. Reciprocal activation of SRC and STAT3 is
implicated in PDAC progression [48–50]. v-SRC directly associates
with STAT3 to promote its phosphorylation, DNA binding, and
transcriptional activity [51, 52]. Reciprocally, STAT3 activation is
required for v-SRC to promote cellular transformation [53–55]. SRC
and STAT3 signaling enhances the transcription of angiogenic
genes (e.g., IL8, VEGF) in human pancreatic cancer cells [56–58],
while inhibition of SRC activity decreases STAT3 phosphorylation
and tumorigenicity [56].

YAP signaling. YES1-associated protein (YAP) is a major effector
of the Hippo signaling pathway, and enables an immune
suppressive PDAC microenvironment [59, 60]. SRC plays a major
role for YAP nuclear localization and phosphorylation [61], which
results in the transcription of YAP-target genes involved in cell
proliferation and survival through Hippo-dependent [62, 63] and
Hippo-independent pathways [64].

FAK signaling. Aberrant FAK activation facilitates cancer cell
migration, survival, adhesion, and invasion, and is associated with
a worse prognosis in PDAC [65–67]. Following integrin

Fig. 2 Regulation of SRC activation. SRC is maintained in an inactive conformation by the binding of the SH2 linker to the SH3 domain, and
by the binding of the phosphorylated YT to the SH2 domain. Activation of SRC occurs following dephosphorylation of YT, as well as auto/
trans-phosphorylation of YA. Figure created in Biorender.
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engagement or ligand stimulation, FAK undergoes auto-
phosphorylation and forms a complex with SRC [68, 69], which
induces a conformational change in SRC and its activation. In turn,
activated SRC phosphorylates FAK, which serves as a docking site
for proteins that stimulate the activation of downstream signaling
pathways including RAS, STAT3, and PI3K [70]. The FAK and SRC
complex also phosphorylates cytoskeletal adapter proteins (e.g.,
Paxillin and CAS), which recruit and activate additional signaling
molecules involved in cell motility and invasion [69].

Crosstalk with receptor tyrosine kinases (e.g., EGFR and PDGFR).
Aberrant activation of SRC and EGFR is observed in most human
malignancies, suggesting functional cooperativity to promote
tumor development [71]. In addition to direct tyrosine phosphor-
ylation [72–74], SRC can indirectly activate EGFR signaling by
stimulating matrix metalloproteinases (MMPs), which cleave EGFR
ligands to promote receptor activation [75]. Another mechanism
by which SRC amplifies EGFR signaling is by promoting destruc-
tion of the ubiquitin-protein ligase c-CBL, which mediates
proteasomal degradation of activated EGFR [76, 77].
In support of the oncogenic synergy between SRC and EGFR in

PDAC, stable complexes between SRC and EGFR contribute to
more aggressive tumor phenotypes by enhancing DNA synthesis
and mitosis [71, 78]. Accordingly, dasatinib (SRC inhibitor) and
erlotinib (EGFR inhibitor) treatment reduces pancreatic cancer cell
migration and invasion, overcomes STAT3-mediated chemoresis-
tance, and attenuates the growth of PDAC xenografts [79].
SRC also plays versatile roles in mediating cell responses

regulated by PDGFR signaling, including cell survival, migration,
and actin cytoskeleton rearrangement [80, 81]. Ligand-induced
activation of PDGFRβ results in dephosphorylation of SRC
on Tyr530 and auto-phosphorylation on Tyr419. In turn, SRC
phosphorylates PDGFR and renders it active [82–84].

Constitutive SRC activation due to autocrine PDGF/PDGFR
stimulation is observed in genetically-engineered mice that
spontaneously develop PDAC, and accelerates tumor develop-
ment and metastasis [85]. Co-expression of PDGF and SRC is also
associated with increased pro-tumorigenic WNT/β-catenin sig-
naling, elevated serum PDGF, and a poorer survival in human
PDAC patients [85]. In another study, treatment of mice
with the dual PDGFR and SRC tyrosine kinase inhibitor
GN963 significantly reduced the growth of orthotopic L3.6pl
tumors, and synergized with gemcitabine to abrogate liver
metastasis [86].

Cancer cell stemness
Increased SRC activity is observed in pancreatic cancer stem cells
[87], and is linked to ligand/receptor signaling pathways
commonly implicated in tumor progression [88–90]. Accordingly,
therapeutic inhibition of SRC reduces pancreatic cancer stem cell
abundance, as well as their colony forming and self-renewing
properties in vivo [87].

Hypoxia and metabolic reprograming
In response to hypoxia, pancreatic cancer cells adopt an invasive
and treatment-resistant phenotype that enhances tumor growth
and metastasis [91–94]. Hypoxia is also accompanied by an
accumulation of immunosuppressive myeloid cells and cancer-
associated fibroblasts, which promote the exhaustion and
exclusion of cytotoxic effector cells [95–97].
SRC activity is increased in hypoxic regions of PDAC tumor-

bearing mice, and can be therapeutically targeted using the small
molecule SRC inhibitor AZD0530 [98]. Hypoxia-induced activation
of SRC also stimulates downstream activation of FAK, NFκB, HIF1α,
and STAT3 in cancer cells, which enhances survival, invasion,
metastasis, and chemoresistance [99–102].

Fig. 3 Examples of SRC signal transduction pathways. SRC can interact with G-protein coupled receptors (GPCRs), receptor tyrosine kinases
(RTKs; e.g., MET, PDGFR, EGFR), and integrins to activate downstream signaling pathways (e.g., PI3K, RAS/ERK, STAT3) that promote cell
proliferation, survival and angiogenesis. In addition, SRC can phosphorylate p120-catenin to disrupt adherens junctions stabilized by
E-cadherin to enhance cell adhesion. Conversely, SRC and FAK signaling mediates the activation of downstream targets (e.g., p130CAS,
Paxillin, RhoA) and results in the formation of complexes with integrin molecules that modulate the extracellular matrix (ECM) to stimulate cell
migration, invasion, and metastasis. Figure created in Biorender.

A.R. Poh and M. Ernst

1789

Oncogene (2023) 42:1786 – 1801



Tumor cells alter their metabolic needs in response to hypoxia
to maintain their survival and proliferation [103]. This process,
termed the Warburg effect, describes a process by which cancer
cells preferentially use glycolysis for energy production [104]. The
Warburg effect is advantageous as it provides rapidly proliferating
tumor cells with metabolic intermediates to synthesize cellular
components, improves the metastatic potential of cancer cells,
and limits oxidative stress [105–108]. SRC has been shown to drive
the Warburg effect and therapy resistance by inactivating
pyruvate dehydrogenase (PDH), which regulates the metabolic
fine-tuning between glycolysis and oxidative phosphorylation
[109]. Conversely, treatment of cancer cells with the small
molecule SRC inhibitors SU6656 and saracatinib increases PDH
phosphorylation and the generation of reactive oxygen species
[109]. Together, these findings demonstrate a key involvement of
SRC via induction of molecular pathways involved in hypoxia and
metabolic reprograming.

Cancer cell invasion and metastasis
SRC expression is most prominent at the invasive border of PDAC,
and correlates with enhanced epithelial to mesenchymal transi-
tion (EMT) and metastasis [110]. Loss of E-cadherin is a hallmark of
EMT [111], and is associated with increased tumor cell invasion
and spread [112, 113]. SRC is inversely correlated with E-cadherin
levels in human PDAC, while its inhibition restores E-cadherin
expression and decreases cellular invasion [114, 115]. The SRC/FAK
signaling axis also promotes TGFβ-induced delocalization of
E-cadherin [116], while concurrent inhibition of SRC and FAK
prevents E-cadherin endocytosis and strengthens E-cadherin-
mediated cell adhesions [117].
Detachment of normal cells from the extracellular matrix leads

to reduced proliferation and cell death [118]. However, PDAC cells
can evade this process by activating signaling pathways that
enable adhesion-independent survival. Increased SRC auto-
phosphorylation is observed following detachment of pancreatic
cancer cells from the extracellular substratum, and results in the
activation of downstream signaling proteins (e.g., AKT, JNK)
important for cell survival and proliferation [119]. These findings
reveal an additional mechanism by which aberrant activation of
SRC facilitates tumor invasion and metastasis by preventing the
death of migrating cancer cells.
Another way in which aberrant SRC activation contributes to

invasion and metastasis is by facilitating the formation of invadopo-
dia. Invadopodia are cell protrusions that mediate actin contractility,
membrane trafficking, and focal degradation, thereby enhancing
cancer cell extravasation during metastasis [120]. SRC and FAK
signaling correlates with the matrix-remodeling ability of invadopodia
[121, 122] by regulating the production of MMPs [123–125].

Therapy resistance and modulating treatment response
Increased SRC expression positively correlates with chemoresis-
tance in human pancreatic cancer cell lines [126], while oncogenic
KRAS mutations induce a SRC-dependent amplification loop that
promotes metastasis and therapy resistance in human PDAC
tumors [127]. Conversely, therapeutic or siRNA-mediated SRC
inhibition restores sensitivity to gemcitabine [126], 5-flourouracil
[128], paclitaxel [129], and cetuximab [130] in preclinical PDAC
models. Although the mechanisms underpinning a role for SRC in
PDAC chemo-resistance are still unclear, these findings support
the use of SRC inhibitors as a complementary strategy to improve
response of pancreatic tumors to chemotherapy.

EFFECTS OF TUMOR CELL-EXTRINSIC SRC ACTIVITY IN
PANCREATIC CANCER
Aberrant activation of SRC in cells of the immediate tumor
environment can also promote PDAC development and progres-
sion via several mechanisms, including inflammation, immune

modulation, desmoplasia, angiogenesis, and lymph-angiogenesis
(Fig. 3).

Inflammation and immune modulation
Chronic inflammation is a key component of PDAC, and is linked
to tumor progression, metastasis, and chemoresistance [131]. In
response to chronic inflammation, pancreatic acinar cells de-
differentiate into a ductal-like phenotype in a process known as
acinar-to-ductal metaplasia (ADM) [132]. ADM lesions may further
develop into pancreatic intraepithelial neoplasia (PanIN) [132],
which represent the dominant precursor to PDAC [133, 134].
Increased SRC expression is observed during the progression of

chronic pancreatitis to PanIN and PDAC [135], while treatment of
mice with the SRC kinase inhibitor PP2 significantly reduces the
severity of caerulein-induced pancreatitis in mice and is associated
with impaired activation of inflammatory signaling pathways (e.g.,
STAT3, ERK, NFκB) [136]. Mechanistically, aberrant activation of
SRC is observed in circulating monocytes and tissue macrophages
during chronic pancreatitis, as well as in tumor-associated
macrophages and acinar cells [28, 137]. Accordingly, SRC regulates
the production of IL6 by inflammatory macrophages [138], which
is required for ADM and progression to PDAC [139]. SRC is also
downstream of the SDF1/CXCR4 signaling axis [140], which
facilitates mobilization of inflammatory leukocytes and bone
marrow-derived mesenchymal cells during pancreatitis and tumor
development [141, 142], and enables pancreatic cancer cell
invasion and EMT [143, 144].
In addition to inflamed tissues, macrophages are also a major

component of PDAC tumors and are associated with poor patient
survival [96, 145]. SRC expression and activation is increased in
PDAC-associated macrophages compared with resident macro-
phages in the normal pancreas, and correlates with tumor growth
[137]. Activation of SRC in tumor-associated macrophages is
induced by tumor-derived cytokines and chemokines (e.g., TNF,
MIP, SDF-1), which amplify the production of inflammatory
cytokines (e.g., TNF, IL1β, IL6) to reciprocally activate SRC in a
feed-forward loop and promote PDAC progression [28, 146].
Surprisingly, the immune modulatory roles of SRC in PDAC

remains understudied compared to other cancer types. In
preclinical models of B16.OVA melanoma, 1956 sarcoma, MC38
colon, and 4T1 breast cancer, therapeutic inhibition of SRC was
shown to enhance antitumor immunity by increasing the
infiltration of T- and NK cells, and by reducing the abundance of
regulatory T-cells (Tregs) [147]. Similar findings were observed in a
mouse model of head and neck squamous cell carcinoma, where
dasatinib dramatically reduced tumor growth by inhibiting the
recruitment of myeloid-derived suppressor cells [148].

Desmoplasia
Cancer-associated fibroblasts play a major role in the desmoplastic
reaction of PDAC via extracellular matrix deposition and remodel-
ing, production of growth factors, as well as reciprocal signaling
interactions with cancer and immune cells to promote an
immune-suppressive tumor microenvironment [149]. Conversion
of normal fibroblasts into cancer-associated fibroblasts is modu-
lated by YAP1-mediated activation of SRC, which stimulates
cytoskeletal protein activation and actomyosin contractility [150].
Crosstalk between cancer-associated fibroblasts and the extra-

cellular matrix reinforces the stiffness of the tumor stroma [151].
For example, binding of membrane-bound integrin receptors to
extracellular matrix proteins triggers downstream activation of
FAK and SRC to induce cytoskeletal remodeling and reinforce
cellular stiffness [152]. Reciprocally, increased extracellular matrix
stiffness activates the SRC/YAP/MYL9/MYL2 axis in cancer-
associated fibroblasts to maintain their tumorigenic phenotype
[153]. In contrast, concurrent inhibition of SRCand EGFR increases
microvessel density and prevents fibrosis in orthotopic and
genetically-engineered PDAC mouse models [154].
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Angiogenesis and lymph-angiogenesis
Angiogenesis plays a critical role in PDAC by providing oxygen
and nutrients to cancer cells, facilitating tumor cell migration, and
promoting the secretion of cytokines by endothelial cells to
stimulate tumor growth [155]. VEGF is a key angiogenic molecule
that is most frequently upregulated in tumor and immune cells
[156], and several studies have demonstrated a requirement of
SRC in VEGF-mediated angiogenesis by preventing endothelial cell
apoptosis and influencing the stability of sprouting blood vessels
[157–160].
Upregulated expression of IL8 is observed in PDAC, and enables

tumor growth and metastasis by enhancing angiogenesis via
paracrine interactions with endothelial cells [161, 162]. Of note,
SRC activity correlates with IL8 production in human L3.6pl and
PANC-1 pancreatic cancer cell lines, while pharmacologic inhibi-
tion of endogenous SRC or siRNA-mediated knock-down of SRC
significantly reduces IL8 production and angiogenesis [56].
SRC also contributes to lymph-angiogenesis, which promotes

metastasis to regional lymph nodes [163, 164]. The VEGF-C/VEGFR-
3 signaling axis directly activates lymphatic endothelial cells and
enhances the secretion of cytokines and growth factors that
promote lymph vessel formation [165–168]. SRC promotes IL6-
induced VEGF-C expression in lymphatic endothelial cells [169],
and VEGF-C stimulation of lymphatic endothelial cells upregulates
SRC activity [170]. This functional cooperation suggests paracrine
interactions between SRC and VEGF-C signaling in the tumor
microenvironment, since therapeutic inhibition of SRC suppresses
VEGF-C expression in pancreatic cancer cells, and impairs the
proliferation and sprouting of lymphatic endothelial cells [170].

TARGETING SRC IN PANCREATIC CANCER
Strategies to inhibit SRC include suppressing its catalytic activity,
inhibiting protein stability, interfering with signaling components

of the SRC signaling pathway, or by reducing its protein-protein
interactions (Fig. 4).

Inhibiting SRC catalytic activity
Small molecule ATP-competitive SRC inhibitors that target the
catalytic activity of SRC include dasatinib (Sprycel, BMS354825,
Bristol-Myers Squibb), bosutinib (SKI-606, Wyeth), and saracatinib
(AZD0530, AstraZeneca) [171]. The antitumorigenic activity of
dasatinib has been extensively studied in preclinical models;
however, its efficacy in Phase I/II clinical trials has been
disappointing (Table 1). One major issue is the lack of biomarkers
to identify patients who are most likely to respond to therapy. This
is crucial, since the therapeutic efficacy of SRC inhibitors is
influenced by the level of SRC activity in tumors [135]. In one trial,
dasatinib failed to improve the overall survival of patients with
metastatic pancreatic cancer; however, a durable response was
observed in a few patients following brief exposure to therapy
(NCT00474812) [172]. These findings provide compelling rationale
for studying the biology of “exceptional responders” to identify
biomarkers or genetic vulnerabilities that could be exploited to
improve treatment response [173]. Currently, small molecule SRC
inhibitors are not FDA-approved for the treatment of solid tumors.

Interfering with protein stability
Another approach to reduce SRC activation includes triggering
protein instability or preventing maturation of the protein. The
molecular chaperone Heat shock protein 90 (Hsp90) promotes the
stability and function of oncoproteins including SRC [174]. Hsp90
inhibitors are divided into several classes based on their
mechanism of action, including (1) inhibiting ATP binding, (2)
disruption of co-chaperone/Hsp90 interactions, (3) preventing
post-translational modifications of Hsp90, and (4) interfering with
client/Hsp90 associations [174]. The latter class of Hsp90 inhibitors
promote the degradation of client proteins [175], and have shown

Fig. 4 Therapeutic strategies to inhibit SRC signaling. Therapeutic approaches to inhibit SRC include (1) interfering with protein stability/
membrane localization, (2) reducing protein-protein interactions, (3) inhibiting catalytic kinase activity, or (4) by interfering with upstream/
downstream signaling components. Figure created in Biorender.

A.R. Poh and M. Ernst

1791

Oncogene (2023) 42:1786 – 1801



Ta
bl
e
1.

Su
m
m
ar
y
o
f
se
le
ct
ed

cl
in
ic
al

tr
ia
ls
u
si
n
g
SR

C
in
h
ib
it
o
rs

in
p
an

cr
ea
ti
c
ca
n
ce
r.

D
ru
g

Se
le
ct
io
n
cr
it
er
ia

Ph
as
e

C
om

b
in
at
io
n

p
ar
tn
er
s

Si
d
e
ef
fe
ct
s

St
at
us

O
ut
co

m
e

R
ef
er
en

ce
s

D
as
at
in
ib

Lo
ca
lly
-a
d
va
n
ce
d

p
an

cr
ea
ti
c
ca
n
ce
r

II
G
em

ci
ta
b
in
e

N
eu

tr
o
p
en

ia
,f
at
ig
u
e,

th
ro
m
b
o
cy
to
p
en

ia
,a

n
em

ia
,

ab
d
o
m
in
al

p
ai
n

C
o
m
p
le
te

N
o
si
g
n
ifi
ca
n
t
cl
in
ic
al

ac
ti
vi
ty

[2
26

]

A
d
va
n
ce
d
p
an

cr
ea
ti
c

ca
n
ce
r

I
Er
lo
ti
n
ib

+
g
em

ci
ta
b
in
e

A
n
em

ia
,f
at
ig
u
e,

n
au

se
a,

ly
m
p
h
o
p
en

ia
,l
eu

ko
p
en

ia
,

n
eu

tr
o
p
en

ia
,t
h
ro
m
b
o
cy
to
p
en

ia

A
ct
iv
e,

n
o
t

re
cr
u
it
in
g

W
el
l
to
le
ra
te
d
.

St
ab

le
d
is
ea
se

as
b
es
t
re
sp
o
n
se

o
b
se
rv
ed

in
69

%
o
f
p
at
ie
n
ts

N
C
T0

16
60

97
1

[2
01

]

M
et
as
ta
ti
c
p
an

cr
ea
ti
c

ca
n
ce
r

II
M
o
n
o
th
er
ap

y
Te
rm

in
at
ed

d
u
e
to

to
xi
ci
ty

Te
rm

in
at
ed

d
u
e

to
to
xi
ci
ty

N
/A

N
C
T0

05
44

90
8

II
M
o
n
o
th
er
ap

y
Fa
ti
g
u
e,

n
au

se
a,

ed
em

a,
p
le
u
ra
l

ef
fu
si
o
n
s

C
o
m
p
le
te
d
,

aw
ai
ti
n
g
re
su
lt
s

N
o
si
g
n
ifi
ca
n
t
cl
in
ic
al

ac
ti
vi
ty

N
C
T0

04
74

81
2

[1
72

]

II
5-
FU

an
d

o
xa
lip

la
ti
n

N
au

se
a,

fa
ti
g
u
e,

n
eu

tr
o
p
en

ia
,

u
p
p
er

g
as
tr
o
in
te
st
in
al

h
em

o
rr
h
ag

e,
d
ep

re
ss
io
n

C
o
m
p
le
te

W
el
l
to
le
ra
te
d
.N

o
im

p
ro
ve

m
en

t
in

ef
fi
ca
cy

o
ve

r
ch

em
o
th
er
ap

y
al
o
n
e

N
C
T0

16
52

97
6

[2
27

]

II
m
FO

LF
O
X
6

R
es
u
lt
s
p
en

d
in
g

C
o
m
p
le
te
d

R
es
u
lt
s
p
en

d
in
g

N
C
T0

16
52

97
6

R
es
ec
te
d
p
an

cr
ea
ti
c
ca
n
ce
r

(a
d
ju
va
n
t)

II
G
em

ci
ta
b
in
e

R
es
u
lt
s
p
en

d
in
g

C
o
m
p
le
te
d

R
es
u
lt
s
p
en

d
in
g

N
C
T0

12
34

93
5

B
o
su
ti
n
ib

A
d
va
n
ce
d
so
lid

ca
n
ce
rs

(in
cl
u
d
in
g
p
an

cr
ea
ti
c)

I
M
o
n
o
th
er
ap

y
N
au

se
a,

d
ia
rr
h
ea
,v

o
m
it
in
g,

fa
ti
g
u
e,

an
o
re
xi
a

C
o
m
p
le
te
d

W
el
l
to
le
ra
te
d
.C

o
m
p
le
te

re
sp
o
n
se

an
d
st
ab

le
d
is
ea
se

o
b
se
rv
ed

N
C
T0

01
95

26
0

[2
28

]

R
es
ec
te
d
p
an

cr
ea
ti
c
ca
n
ce
r

I
G
em

ci
ta
b
in
e

N
/A

Te
rm

in
at
ed

d
u
e

to
sl
o
w

ac
cr
u
al

N
/A

N
C
T0

10
25

57
0

Lo
ca
lly

ad
va
n
ce
d
/

m
et
as
ta
ti
c
so
lid

ca
n
ce
rs

(in
cl

p
an

cr
ea
ti
c)

I/
II

C
ap

ec
it
ab

in
e

D
ia
rr
h
ea
,n

au
se
a,

vo
m
it
in
g

Te
rm

in
at
ed

(r
ea
so
n

u
n
kn

o
w
n
)

Li
m
it
ed

ef
fi
ca
cy

N
C
T0

09
59

94
6

[2
29

]

Sa
ra
ca
ti
n
ib

A
d
va
n
ce
d
p
an

cr
ea
ti
c

ca
n
ce
r

I/
II

G
em

ci
ta
b
in
e

A
n
o
re
xi
a,

d
ia
rr
h
ea
,a

n
em

ia
,

fa
ti
g
u
e,

C
o
m
p
le
te
d

W
el
l
to
le
ra
te
d
.N

o
im

p
ro
ve

m
en

t
in

ef
fi
ca
cy

o
ve

r
ch

em
o
th
er
ap

y
al
o
n
e

N
C
T0

02
65

87
6

[2
30

]

R
ec
u
rr
en

t
m
et
as
ta
ti
c

p
an

cr
ea
ti
c
ca
n
ce
r

II
M
o
n
o
th
er
ap

y
R
es
u
lt
s
p
en

d
in
g

C
o
m
p
le
te
d

R
es
u
lt
s
p
en

d
in
g

N
C
T0

07
35

91
7

A.R. Poh and M. Ernst

1792

Oncogene (2023) 42:1786 – 1801



Ta
bl
e
2.

Su
m
m
ar
y
o
f
se
le
ct
ed

cl
in
ic
al

tr
ia
ls
ta
rg
et
in
g
u
p
st
re
am

an
d
/o
r
d
o
w
n
st
re
am

ac
ti
va
to
rs

o
f
SR

C
in

p
an

cr
ea
ti
c
ca
n
ce
r.

Ta
rg
et

D
ru
g

Se
le
ct
io
n
cr
it
er
ia

Ph
as
e

C
om

b
in
at
io
n

p
ar
tn
er
s

Si
d
e
ef
fe
ct
s

St
at
us

O
ut
co

m
e

R
ef
er
en

ce
s

In
te
g
ri
n
s

C
ile
n
g
it
id
e

A
d
va
n
ce
d
p
an

cr
ea
ti
c

ca
n
ce
r

II
G
em

ci
ta
b
in
e

N
au

se
a,

d
ys
p
ep

si
a,

d
ys
p
n
ea
,c
h
ill
s,
fe
ve
r

C
o
m
p
le
te
d

W
el
l
to
le
ra
te
d
;n

o
si
g
n
ifi
ca
n
t
im

p
ro
ve
m
en

t
in

su
rv
iv
al

EM
D

12
19

74
[1
90

]

IM
G
N
38

8
A
d
va
n
ce
d
so
lid

ca
n
ce
rs

(in
cl
u
d
in
g
p
an

cr
ea
ti
c

ca
n
ce
r)

I
M
o
n
o
th
er
ap

y
R
es
u
lt
s
p
en

d
in
g

C
o
m
p
le
te
d

R
es
u
lt
s
p
en

d
in
g

N
C
T0

07
21

66
9

[2
31

]

Vo
lo
ci
xi
m
ab

M
et
as
ta
ti
c
p
an

cr
ea
ti
c

ca
n
ce
r

II
G
em

ci
ta
b
in
e

R
es
u
lt
s
p
en

d
in
g

C
o
m
p
le
te
d

R
es
u
lt
s
p
en

d
in
g

N
C
T0

04
01

57
0

[2
32

]

EG
FR

Er
lo
ti
n
ib

Lo
ca
lly

ad
va
n
ce
d

p
an

cr
ea
ti
c
ca
n
ce
r

III
G
em

ci
ta
b
in
e

A
n
em

ia
,n

eu
tr
o
p
en

ia
,

d
ia
rr
h
ea
,r
as
h

C
o
m
p
le
te
d

N
o
si
g
n
ifi
ca
n
t

im
p
ro
ve
m
en

t
in

o
ve

ra
ll

su
rv
iv
al

N
C
T0

06
34

72
5

[1
93

]

A
d
va
n
ce
d
p
an

cr
ea
ti
c

ca
n
ce
r

II
G
em

ci
ta
b
in
e

N
eu

tr
o
p
en

ia
,

ly
m
p
h
o
p
en

ia
,f
at
ig
u
e

C
o
m
p
le
te
d

W
el
l
to
le
ra
te
d
;n

o
si
g
n
ifi
ca
n
t
im

p
ro
ve
m
en

t
in

su
rv
iv
al

N
C
T0

08
10

71
9

[2
33

]

A
d
va
n
ce
d
p
an

cr
ea
ti
c

ca
n
ce
r

III
G
em

ci
ta
b
in
e

N
au

se
a,

vo
m
it
in
g,

fa
ti
g
u
e,

an
o
re
xi
a

C
o
m
p
le
te
d

In
cr
ea
se
d
o
ve
ra
ll
an

d
p
ro
g
re
ss
io
n
fr
ee

su
rv
iv
al

in
co

m
b
in
at
io
n
g
ro
u
p

N
C
T0

00
26

33
8

[1
92

]

C
et
u
xi
m
ab

A
d
va
n
ce
d
p
an

cr
ea
ti
c

ca
n
ce
r

III
G
em

ci
ta
b
in
e

D
ia
rr
h
ea
,r
as
h
,f
at
ig
u
e,

n
au

se
a,

vo
m
it
in
g

C
o
m
p
le
te
d

N
o
si
g
n
ifi
ca
n
t

im
p
ro
ve
m
en

t
in

o
ve

ra
ll

su
rv
iv
al

N
C
T0

00
75

68
6

[2
34

]

N
im

o
tu
zu
m
ab

A
d
va
n
ce
d
p
an

cr
ea
ti
c

ca
n
ce
r

II
G
em

ci
ta
b
in
e

Fa
ti
g
u
e,

ra
sh

C
o
m
p
le
te
d

W
el
l
to
le
ra
te
d
.

Si
g
n
ifi
ca
n
tl
y
im

p
ro
ve

d
p
ro
g
re
ss
io
n
fr
ee

an
d

o
ve

ra
ll
su
rv
iv
al

N
C
T0

05
61

99
0

[2
35

]

FA
K

PF
‐0
05

62
27

1
A
d
va
n
ce
d
so
lid

ca
n
ce
rs

(in
cl
u
d
in
g
p
an

cr
ea
ti
c

ca
n
ce
r)

I
M
o
n
o
th
er
ap

y
H
ea
d
ac
h
e,

n
au

se
a/

vo
m
it
in
g
,d

eh
yd

ra
ti
o
n
,

ed
em

a

C
o
m
p
le
te
d

M
TD

d
et
er
m
in
ed

N
C
T0

06
66

92
6

[2
36

]

V
S‐
47

18
A
d
va
n
ce
d
p
an

cr
ea
ti
c

ca
n
ce
r

I
G
em

ci
ta
b
in
e/

N
ab

‐

p
ac
lit
ax
el

N
/A

Te
rm

in
at
ed

N
/A

N
C
T0

26
51

72
7

D
ef
ac
ti
n
ib

A
d
va
n
ce
d
so
lid

ca
n
ce
rs

(in
cl
u
d
in
g
p
an

cr
ea
ti
c

ca
n
ce
r)

II
Pe

m
b
ro
liz
u
m
ab

(a
n
ti
‐P
D
1)

N
/A

R
ec
ru
it
in
g

N
/A

N
C
T0

27
58

58
7

A
d
va
n
ce
d
so
lid

ca
n
ce
rs

(in
cl
u
d
in
g
p
an

cr
ea
ti
c

ca
n
ce
r)

II
Pe

m
b
ro
liz
u
m
ab

an
d
G
em

ci
ta
b
in
e

Fa
ti
g
u
e,

n
au

se
a,

m
ya
lg
ia
,

n
au

se
a/
vo

m
it
in
g
,

an
o
re
xi
a,

fe
ve
r

C
o
m
p
le
te
d

W
el
l
to
le
ra
te
d
.N

o
p
ar
ti
al

o
r
co

m
p
le
te

re
sp
o
n
se
s

o
b
se
rv
ed

N
C
T0

25
46

53
1

G
SK

22
56

09
8

R
ec
u
rr
en

t
p
an

cr
ea
ti
c

ca
n
ce
r

II
Tr
am

et
in
ib

(M
EK

1/
2

in
h
ib
it
o
r)

N
/A

A
ct
iv
e,

n
o
t

re
cr
u
it
in
g

N
/A

N
C
T0

24
28

27
0

PI
3K

/A
K
T

O
le
an

d
ri
n
(P
B
I‐

05
20

4)
M
et
as
ta
ti
c
p
an

cr
ea
ti
c

ca
n
ce
r

I
M
o
n
o
th
er
ap

y
N
/A

A
ct
iv
e,

n
o
t

re
cr
u
it
in
g

N
/A

N
C
T0

23
29

71
7

A
Z
D
53

63
A
d
va
n
ce
d
/r
ec
u
rr
en

t
so
lid

ca
n
ce
rs

(in
cl
u
d
in
g

p
an

cr
ea
ti
c
ca
n
ce
r)

II
M
o
n
o
th
er
ap

y
N
/A

R
ec
ru
it
in
g

N
/A

N
C
T0

24
65

06
0

Pe
ri
fo
si
n
e

A
d
va
n
ce
d
p
an

cr
ea
ti
c

ca
n
ce
r

II
M
o
n
o
th
er
ap

y
N
au

se
a,

vo
m
it
in
g,

fa
ti
g
u
e

C
o
m
p
le
te
d

N
o
o
b
je
ct
iv
e
re
sp
o
n
se

o
b
se
rv
ed

N
C
T0

00
59

98
2

[2
37

]

B
u
p
ar
lis
ib

I
m
FO

LF
O
X
6

N
eu

tr
o
p
en

ia
,f
at
ig
u
e,

le
u
ko

p
en

ia
,

C
o
m
p
le
te
d

M
TD

d
et
er
m
in
ed

N
C
T0

15
71

02
4

[2
38

]

A.R. Poh and M. Ernst

1793

Oncogene (2023) 42:1786 – 1801



promising results in Phase I clinical trials [174–176]. Given that
Hsp90 is required for the maturation of SRC [177], Hsp90 inhibitors
may represent an effective strategy for the treatment of PDAC.
Indeed, Hsp90 inhibitors ICPD47 and ICPD62 have been shown to
synergize with chemotherapy and reduce the growth of
pancreatic cancer cell lines in vitro [178]. Furthermore, treatment
of mice with the Hsp90 inhibitor XL888 in combination with anti-
PD1 impaired the growth of subcutaneous Panc02 and orthotopic
KPC tumors [179]. Further analysis revealed that tumors of mice
treated with both XL888 and anti-PD1 showed increased T-cell
infiltration and an enrichment of genes associated with immune
activation [179]. In separate studies, inhibition of Hsp90 also
sensitized treatment-refractory PDAC xenografts to chemotherapy
and radiotherapy [180]. A Phase I/II trial of XL888 in combination
with anti-PD1 is currently undergoing clinical evaluation in
patients with advanced pancreatic cancer (NCT3095781).
N-myristoyltransferases (NMTs) are enzymes that regulate the

function of oncogenic proteins by catalyzing myristoylation [181].
Protein N-myristoylation of SRC anchors it to the cell membrane,
and helps maintain its structure and kinase activity [181, 182].
Interestingly, NMT levels correlate with SRC activation in human
tumors, and is associated with a poor prognosis [183]. Meanwhile,
inhibition of NMT1 suppresses SRC-induced oncogenic signaling
and significantly reduces the growth of tumor xenografts with
limited toxicity in vivo [183]. Loss of myristoylation also suppresses
downstream SRC signaling pathways, including FAK and MAPK
[184].

Interfering with upstream and/or downstream molecules of
the SRC signaling pathway
Given the complexity of the SRC signaling network, therapeutic
agents aimed at interfering with upstream and/or downstream
SRC signaling components (e.g., integrins, EGFR, FAK, PI3K)
represent another promising approach for the treatment of PDAC
(Table 2).

Integrins. Integrins are transmembrane receptors that bind with
proteins (e.g., vinculin, filamin) to regulate cytoskeleton stability,
and phosphorylate kinases (e.g., SRC, FAK) to activate down-
stream signaling pathways. Activation of SRC by β1 integrin
enhances the invasive capacity of pancreatic cancer cells [185],
while activation of SRC by β3 integrin promotes anchorage-
independent PDAC tumor growth and lymph node metastasis
[186]. Integrins are also involved in stellate cell activation [187],
and the production of tumor-promoting cytokines [188]. In
orthotopic and genetically-engineered models of PDAC, coadmi-
nistration of cilengitide (avβ3 and avβ5 integrin antagonist) and
verapamil (calcium channel blocker) increased chemo-sensitivity
to gemcitabine, and significantly reduced tumor growth com-
pared with monotherapy-treated groups [189]. However, a Phase
II trial combining cilengitide with gemcitabine in patients with
advanced pancreatic cancer did not achieve clinical benefit (EMD
121974) [190] (Table 2).

EGFR. Reciprocal signaling between SRC and EGFR contributes
to a more cancer-aggressive phenotype by enhancing tumor cell
proliferation, invasion, and metastasis [71, 78]. Two main
approaches used to target EGFR include monoclonal antibodies
(e.g., cetuximab, nimotuzumab) directed against the extracel-
lular domain, as well as small molecule inhibitors (e.g., erlotinib)
that compete for the ATP binding site in the tyrosine kinase
domain [191]. Erlotinib is the furthest in development for the
treatment of PDAC, but has demonstrated mixed results in the
clinic (Table 2). In a Phase III trial, erlotinib in combination with
gemcitabine significantly improved progression-free and overall
survival (NCT00026338) [192], but failed to produce clinical
activity in other studies (NCT00634725 [193], NCT00026338
[192]).Ta
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FAK. The SRC/FAK signaling axis is implicated in PDAC by
increasing tumor cell proliferation, EMT, and metastasis
[68, 69, 116, 117]. The FAK inhibitor SK2256098 attenuates the
proliferation, motility, and survival of pancreatic cancer cells
in vitro [194], while VS-4718 doubled the survival of tumor-bearing
mice by restoring sensitivity to chemotherapy and immunother-
apy [30, 195]. These changes were associated with reduced tumor
fibrosis and decreased numbers of immunosuppressive cells [30].
Based on these encouraging findings, several trials combining FAK
inhibitors with chemotherapy (e.g., gemcitabine, nab‐paclitaxel) or
immunotherapy (e.g., anti-PD1) are currently underway (Table 2).

PI3K. SRC-mediated activation of PI3K [45, 46] results in down-
stream phosphorylation of AKT and enhances the growth and
survival of pancreatic cancer cells [47]. Accordingly, treatment of
mice with the pan-PI3K inhibitor LY294002 inhibited the growth of
orthotopic PDAC tumors and decreased peritoneal and liver
metastasis [196]. Several pan-PI3K inhibitors have been evaluated
in Phase I/II clinical trials in patients with advanced PDAC (Table 2),
but have shown poor tolerability and negligible clinical benefit.

Reducing protein-protein interactions
Small molecule non-peptide inhibitors (e.g., AP22408, AP22161,
UCS15A) have shown efficacy at reducing SRC protein-protein
interactions; however, their effectiveness in cancer remains to be
evaluated. AP22408 and AP22161 selectively bind to the SH2
domain of SRC [197, 198], while UCS15A prevents SH3 domain
protein-protein interactions [199, 200].

RATIONALE FOR COMBINATION THERAPY
Despite encouraging results in preclinical studies, SRC inhibitors
have not produced significant clinical benefit in PDAC (Table 1).
The development of innovative and rational drug combinations
that incorporate SRC inhibition as an adjuvant therapy therefore
represents a potential approach to improve patient outcomes with
manageable side effects. However, additional studies are required
to identify which combination partners are likely to produce the
most clinical benefit.

Combining SRC inhibitors with chemotherapy
Aberrant SRC activation plays a role in mediating chemoresistance
in PDAC, while therapeutic inhibition of SRC restores chemo-
sensitivity of human pancreatic cancer cells [128–130]. Likewise,
concomitant inhibition of SRC and EGFR in combination with
gemcitabine overcomes STAT3-mediated chemoresistance and
attenuates the growth of PDAC xenografts [79]. Encouraging
clinical activity was observed in a Phase I trial of patients with
metastatic or locally-advanced PDAC, where dual SRC and EGFR
inhibition (dasatinib plus erlotinib) in combination with gemcita-
bine resulted in stable disease in 69% of patients (NCT01660971)
[201]. However, other Phase I/II trials combining dasatinib,
bosutinib, or saracatinib with gemcitabine have failed to produce
significant clinical activity (Table 1).

Combining SRC inhibitors with targeted therapies
Given the synergism between multiple signaling pathways in
PDAC, combining SRC inhibitors with additional targeted thera-
pies represents another promising approach to induce robust
antitumor responses. For example, inhibition of the SRC/EGFR axis
in combination with gemcitabine dramatically reduced cancer cell
proliferation, survival, and the growth of orthotopic tumors
[79, 154, 201]. This triple combination was also shown to
overcome STAT3-mediated chemoresistance and attenuate the
growth of PDAC xenografts [79]. Likewise, SKLB261 (multikinase
inhibitor of EGFR, SRC, and VEGFR2) potently suppressed the
proliferation and invasion of human PDAC cells, restored chemo-
sensitivity, and extended the survival of tumor-bearing mice [202].

Dual targeting of SRC and SHP2 (required for full activation of the
RAS/ERK pathway) potently inhibited the growth of orthotopic
PDAC tumors [203], while concurrent inhibition of STAT3, SRC, and
EGFR increased gemcitabine chemo-sensitivity and significantly
reduced the growth of PDAC xenografts [204]. Thus, multitargeted
therapies have the potential to be more effective at inducing
robust antitumor effects in PDAC than blockade of individual
pathways alone.

Combining SRC inhibitors with immunotherapy
The poor response of PDAC tumors to immunotherapy is largely
attributed to a desmoplastic tumor microenvironment that is
densely populated by cancer-associated fibroblasts and immuno-
suppressive myeloid cells, which promote the exhaustion and
exclusion of cytotoxic effector cells [8]. Conversely, therapeutic
inhibition of SRC reduces the growth of various solid tumors and
hematological malignancies by enhancing the activation, prolif-
eration, and recruitment of cytotoxic CD8 T cells and NK cells,
suppressing the recruitment of myeloid-derived suppressor cells
and Tregs, and by inhibiting the tumorigenic phenotype of
cancer-associated fibroblasts [147, 148, 150, 151]. Thus, SRC
inhibition may represent a promising adjunct to immunotherapy;
however, the therapeutic benefit of combining SRC inhibitors with
immune checkpoint blockade has not been extensively studied in
the context of PDAC.

CLINICAL CHALLENGES AND THERAPEUTIC PERSPECTIVES
Contributing factors that underpin the poor response to SRC
inhibitors in the clinic include the highly aggressive nature of
PDAC, rapid development of drug resistance, and lack of patient
stratification to identify those who are most likely to benefit from
treatment. To maximize the therapeutic benefit from incorporat-
ing SRC inhibition into existing cancer treatments, several
challenges need to be addressed. One major issue is the lack of
effective biomarkers to identify patients who are most likely to
benefit from SRC inhibitors. This is crucial, since the therapeutic
efficacy of SRC inhibitors is influenced by the extent of SRC activity
in tumors [135, 205–207], as well as mutations in other signaling
proteins (e.g., c-MET and STAT3) [135].

Maximizing clinical translation
To date, all completed clinical trials of SRC inhibitors in pancreatic
cancer have been performed in unselected patients that failed
standard-of-care therapies. Genomic analyses have identified the
existence of genetically-distinct PDAC subtypes, including: (1)
squamous, (2) pancreatic progenitor, (3) immunogenic, and (4)
aberrantly differentiated endocrine exocrine [42]. In one study,
synergism between SRC inhibitors (e.g., dasatinib, PP2) and a
MEK1/2 inhibitor (pimasertinib) enhanced sensitivity to gemcita-
bine in the squamous subtype of pancreatic cancer cells (e.g.,
SW1990 and BxP3) and not in PDAC progenitor cells (e.g., AsPC1)
[208]. Likewise, clinical stage correlates with increased expression
of phosphorylated SRC, and higher baseline levels of phosphory-
lated SRC is associated with improved progression-free survival
following dasatinib therapy [135, 205–207]. Thus, assessment of
SRC activation based on phosphorylation status or gene expres-
sion analysis may serve as a biomarker to stratify and identify
patients who are most likely to benefit from therapy.
Although SRC inhibitors have failed to produce clinical benefit

in most PDAC patients, durable and sustained responses are
observed in a small subset of patients following brief exposure to
therapy (NCT00474812) [172]. Further investigations into the
biology of these exceptional responders are warranted to identify
biomarkers and/or molecular characteristics that could be
exploited to maximize therapeutic response. Specifically, patient-
derived tumor organoids or xenografts may help reveal key
mechanistic insights to guide the design of clinical trials [173].
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Given the unequivocal role of SRC in promoting tumor cell
invasion and migration, there is also a need to evaluate the
efficacy of SRC inhibitors in early-stage disease or in the adjuvant
setting after tumor resection. However, since most PDAC patients
are diagnosed with metastasis, recruitment of patients at early
stages of the disease remains a significant challenge.
Since the redundancy of cellular pathways may limit the efficacy

of inhibiting SRC alone, multitargeted therapies that also block
EGFR or STAT3 represent an effective strategy to boost antitumor
responses. In line with these findings, encouraging clinical activity
was observed in a Phase I trial of patients with metastatic or
locally-advanced PDAC, where dual SRC and EGFR inhibition
(dasatinib plus erlotinib) in combination with gemcitabine
resulted in stable disease in 69% of patients (NCT01660971)
[201]. In another study, STAT3 activation correlated with dasatinib
resistance in pancreatic cancer cells [135], while dual inhibition of
STAT3 and SRC resulted in significantly smaller PDAC tumors in
mice compared to monotherapy-treated groups [204]. Likewise,
MET amplification mediates resistance to SRC inhibitors in various
solid malignancies, while concurrent inhibition of SRC and MET
produces a synergistic cytotoxic effect on tumor growth
[209–211]. Collectively, these findings provide compelling ratio-
nale for the design of innovative and rational combinatorial
strategies to improve the clinical activity of SRC inhibitors.

Clinical considerations for direct vs. indirect inhibition of SRC
Although second-generation SRC inhibitors (e.g., Bosutinib,
Dasatinib, Saracatinib) are designed to be more selective and
potent compared to first-generation inhibitors (e.g., PP1, SU6656),
these multikinase inhibitors still confer off-target effects and
toxicity in normal cells and tissues. For example, dasatinib inhibits
the proliferation and activation of primary human T cells [212],
impairs humoral immunity by promoting B-cell apoptosis [213],
and reduces the pro-inflammatory capacity of human neutrophils
[214].
Inhibition of SRC may also negatively impact bone homeostasis,

since SRC plays an essential role in regulating osteoclastic bone
resorption and osteoblastic bone formation. Accordingly, Src
deficiency results in osteopetrosis in mice [215–218], while
dasatinib treatment increases bone mass by reducing bone
resorption and stimulating bone anabolism [219]. Thus, the SRC
SH2 inhibitors AP22161 and AP22408, which preferentially
accumulate on the surface of bones exert potent inhibition of
osteoclast-mediated bone resorption [197].
Other studies suggest that SRC inhibition may perturb platelet

activation and aggregation, since Src-deficient platelets demon-
strate reduced spreading on fibrinogen, and dasatinib treatment
increases the tail bleeding time of mice in a dose-dependent
manner [220–222]. Likewise, the SRC inhibitors PP2, SU6656, and
dasatinib potently inhibit the coagulation-promoting and clot-
retracting activities of human platelets [221, 223]. These findings
raise important clinical implications, since gastrointestinal, geni-
tourinary, soft tissue hematoma, and central nervous system
bleeding is observed in up to 40% of patients during dasatinib
therapy [224]. This issue is further complicated by the observation
that most patients with bleeding episodes in response to
treatment with these drugs also exhibit low platelet counts and
advanced-stage cancers that require higher doses of dasatinib for
clinical benefit [225].
As an alternative to broad-spectrum SRC inhibitors, indirect

strategies that interfere with upstream and/or downstream
molecules within the SRC signaling cascade may represent safer
and more selective approaches, since these molecules are often
less ubiquitously expressed. Likewise, targeting downstream
effectors may overcome resistance mechanisms that arise from
compensatory activation of other SCR family kinases. Thus,
additional studies comparing the advantages between indirect
and direct SRC inhibition are warranted.

CONCLUDING REMARKS
Given the diverse roles of SRC in PDAC and association with a poor
prognosis, SRC represents a promising therapeutic target for
pancreatic cancer. However, since direct inhibition of SRC still
suffers from sufficient target specificity and may have deleterious
consequences on cellular processes, alternative approaches aimed
at interfering with upstream and/or downstream molecules of the
SRC signaling pathway may represent a safer option. Despite
encouraging results in preclinical studies, SRC inhibitors have also
failed to produce clinical benefit in most PDAC patients.
Contributing factors that underpin the poor response to therapy
include the highly aggressive nature of PDAC, complexity of the
SRC signaling network, rapid development of drug resistance, and
lack of patient stratification to identify those who are most likely
to benefit from treatment. Thus, additional studies are needed to
better understand the diverse roles of SRC in PDAC biology, and to
identify prognostic and predictive factors to help stratify patients
and maximize therapeutic response.
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