Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of Motin family proteins in tumorigenesis—an update

Abstract

The Motin protein family consists of three members: AMOT (p80 and p130 isoforms), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). The family members play an important role in processes such as cell proliferation, migration, angiogenesis, tight junction formation, and cell polarity. These functions are mediated through the involvement of the Motins in the regulation of different signal transduction pathways, including those regulated by small G-proteins and the Hippo-YAP pathway. One of the more characterized aspects of Motin family function is their role in regulating signaling through the Hippo-YAP pathway, and while some studies suggest a YAP-inhibitory function other studies indicate the Motins are required for YAP activity. This duality is also reflected in previous reports, often contradictory, that suggest the Motin proteins can function as oncogenes or tumor suppressors in tumorigenesis. In this review we summarize recent findings and integrate that with the existing work describing the multifunctional role of the Motins in different cancers. The emerging picture suggests that the Motin protein function is cell-type and context dependent and that further investigation in relevant cell types and whole organism models is required for the elucidation of the function of this protein family.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structures of the Motin protein family members.

Similar content being viewed by others

Data availability

The data used in the preparation of this manuscript are publicly available at https://pubmed.ncbi.nlm.nih.gov/.

References

  1. Troyanovsky B, Levchenko T, Månsson G, Matvijenko O, Holmgren L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 2001;152:1247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG, et al. Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene. 2002;298:69–77.

    Article  CAS  PubMed  Google Scholar 

  3. Moleirinho S, Guerrant W, Kissil JL. The Angiomotins–from discovery to function. FEBS Lett. 2014;588:2693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsumoto H, Fukui E, Yoshizawa M, Sato E, Daikoku T. Differential expression of the motin family in the peri-implantation mouse uterus and their hormonal regulation. J Reprod Dev. 2012;58:649–53.

    Article  CAS  PubMed  Google Scholar 

  5. Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol. 2013;23:1181–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsumoto H. Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models. J Reprod Dev. 2017;63:445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ernkvist M, Aase K, Ukomadu C, Wohlschlegel J, Blackman R, Veitonmaki N, et al. p130-angiomotin associates to actin and controls endothelial cell shape. FEBS J. 2006;273:2000–11.

    Article  CAS  PubMed  Google Scholar 

  8. Yi C, Shen Z, Stemmer-Rachamimov A, Dawany N, Troutman S, Showe LC, et al. The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci Signal. 2013;6:ra77.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang C, An J, Zhang P, Xu C, Gao K, Wu D, et al. The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitin-dependent degradation. Biochem J. 2012;444:279–89.

    Article  CAS  PubMed  Google Scholar 

  10. Mason JM, Arndt KM. Coiled coil domains: stability, specificity, and biological implications. Chembiochem. 2004;5:170–6.

    Article  CAS  PubMed  Google Scholar 

  11. Heller B, Adu-Gyamfi E, Smith-Kinnaman W, Babbey C, Vora M, Xue Y, et al. Amot recognizes a juxtanuclear endocytic recycling compartment via a novel lipid binding domain. J Biol Chem. 2010;285:12308–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bratt A, Birot O, Sinha I, Veitonmaki N, Aase K, Ernkvist M, et al. Angiomotin regulates endothelial cell-cell junctions and cell motility. J Biol Chem. 2005;280:34859–69.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng Y, Vertuani S, Nystrom S, Audebert S, Meijer I, Tegnebratt T, et al. Angiomotin-like protein 1 controls endothelial polarity and junction stability during sprouting angiogenesis. Circ Res. 2009;105:260–70.

    Article  CAS  PubMed  Google Scholar 

  14. Adler JJ, Heller BL, Bringman LR, Ranahan WP, Cocklin RR, Goebl MG, et al. Amot130 adapts atrophin-1 interacting protein 4 to inhibit yes-associated protein signaling and cell growth. J Biol Chem. 2013;288:15181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skouloudaki K, Walz G. YAP1 recruits c-Abl to protect angiomotin-like 1 from Nedd4-mediated degradation. PLoS ONE. 2012;7:e35735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim M, Kim M, Park SJ, Lee C, Lim DS. Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep. 2016;17:64–78.

    Article  CAS  PubMed  Google Scholar 

  17. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011;44:325–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan SW, Lim CJ, Guo F, Tan I, Leung T, Hong W. Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J Biol Chem. 2013;288:37296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai X, She P, Chi F, Feng Y, Liu H, Jin D, et al. Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J Biol Chem. 2013;288:34041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adler JJ, Johnson DE, Heller BL, Bringman LR, Ranahan WP, Conwell MD, et al. Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. Proc Natl Acad Sci USA. 2013;110:17368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moleirinho S, Hoxha S, Mandati V, Curtale G, Troutman S, Ehmer U. et al. Regulation of localization and function of the transcriptional co-activator YAP by angiomotin. Elife. 2017;6:e23966.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mana-Capelli S, Paramasivam M, Dutta S, McCollum D. Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell. 2014;25:1676–85.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Regala RP, Weems C, Jamieson L, Khoor A, Edell ES, Lohse CM, et al. Atypical protein kinase C iota is an oncogene in human non-small cell lung cancer. Cancer Res. 2005;65:8905–11.

    Article  CAS  PubMed  Google Scholar 

  24. Archibald A, Al-Masri M, Liew-Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Justilien V, Brennan KI, Jamieson L, Murray NR, Fields AP. PKCiota regulates nuclear YAP1 localization and ovarian cancer tumorigenesis. Oncogene. 2017;36:534–45.

    Article  CAS  PubMed  Google Scholar 

  26. Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T, Gera J. Phosphorylation of the Hippo Pathway Component AMOTL2 by the mTORC2 Kinase Promotes YAP Signaling, Resulting in Enhanced Glioblastoma Growth and Invasiveness. J Biol Chem. 2015;290:19387–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell. 2019;179:1033–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang G, Xiong G, Cao Z, Zheng S, You L, Zhang T, et al. miR-497 expression, function and clinical application in cancer. Oncotarget. 2016;7:55900.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu Z, Wu S, Wang L, Kang S, Zhao B, He F, et al. Prognostic Value of MicroRNA-497 in Various Cancers: A Systematic Review and Meta-Analysis. Dis Markers. 2019;2019:2491291.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ruan WD, Wang P, Feng S, Xue Y, Zhang B. MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells. Onco Targets Ther. 2016;9:303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu H, Zhu S, Mo Y-Y. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 2009;19:439–48.

    Article  CAS  PubMed  Google Scholar 

  32. Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007;67:11612–20.

    Article  CAS  PubMed  Google Scholar 

  33. Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, Triulzi T, et al. microRNA-205 regulates HER3 in human breast cancer. Cancer Res. 2009;69:2195–2200.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang H, Fan Q. MicroRNA-205 inhibits the proliferation and invasion of breast cancer by regulating AMOT expression. Oncol Rep. 2015;34:2163–70.

    Article  CAS  PubMed  Google Scholar 

  35. Wan HY, Li QQ, Zhang Y, Tian W, Li YN, Liu M, et al. MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells. Cancer Lett. 2014;355:148–58.

    Article  CAS  PubMed  Google Scholar 

  36. Tian W, Yang H, Zhou B. Integrative analysis of exosomal microRNA-149-5p in lung adenocarcinoma. Aging (Albany NY). 2021;13:7382–96.

    Article  CAS  PubMed  Google Scholar 

  37. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253–61.

    Article  CAS  PubMed  Google Scholar 

  38. Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res. 2017;77:3965–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tao H, Zhang Y, Yuan T, Li J, Liu J, Xiong Y, et al. Identification of an EMT-related lncRNA signature and LINC01116 as an immune-related oncogene in hepatocellular carcinoma. Aging (Albany NY). 2022;14:1473–91.

    Article  CAS  PubMed  Google Scholar 

  40. Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells. 2022;11:577.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Al-Rugeebah A, Alanazi M, Parine NR. MEG3: an Oncogenic Long Non-coding RNA in Different Cancers. Pathol Oncol Res. 2019;25:859–74.

    Article  CAS  PubMed  Google Scholar 

  42. Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet. 2018;50:1705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuan K, Lan J, Xu L, Feng X, Liao H, Xie K, et al. Long noncoding RNA TLNC1 promotes the growth and metastasis of liver cancer via inhibition of p53 signaling. Mol Cancer. 2022;21:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin X, Spindler TJ, de Souza Fonseca MA, Corona RI, Seo J-H, Dezem FS, et al. Super-enhancer-associated LncRNA UCA1 interacts directly with AMOT to activate YAP target genes in epithelial ovarian cancer. IScience. 2019;17:242–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruan W, Wang P, Feng S, Xue Y, Li Y. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells. Tumor Biol. 2016;37:4065–73.

    Article  CAS  Google Scholar 

  46. Li D, Shen Y, Ren H, Wang L, Yang J, Wang Y. Repression of linc01555 up-regulates angiomotin-p130 via the microRNA-122-5p/clic1 axis to impact vasculogenic mimicry-mediated chemotherapy resistance in small cell lung cancer. Cell cycle (Georgetown, Tex. 2023;22:255–68.

  47. Qiu Y, Mao YT, Zhu JH, Zhao K, Wang JF, Huang JM, et al. Correction to: CLIC1 knockout inhibits invasion and migration of gastric cancer by upregulating AMOT-p130 expression. Clin Transl Oncol. 2021;23:663–4.

    Article  CAS  PubMed  Google Scholar 

  48. Huang T, Zhou Y, Zhang J, Cheng AS, Yu J, To KF, et al. The physiological role of Motin family and its dysregulation in tumorigenesis. J Transl Med. 2018;16:1–13.

    Article  Google Scholar 

  49. Wigerius M, Quinn D, Fawcett JP. Emerging roles for angiomotin in the nervous system. Sci Signal. 2020;13:eabc0635.

    Article  CAS  PubMed  Google Scholar 

  50. Sasaki H. Roles and regulations of Hippo signaling during preimplantation mouse development. Dev, growth Differ. 2017;59:12–20.

    Article  CAS  PubMed  Google Scholar 

  51. Shimono A, Behringer RR. Angiomotin regulates visceral endoderm movements during mouse embryogenesis. Curr Biol. 2003;13:613–7.

    Article  CAS  PubMed  Google Scholar 

  52. Aase K, Ernkvist M, Ebarasi L, Jakobsson L, Majumdar A, Yi C, et al. Angiomotin regulates endothelial cell migration during embryonic angiogenesis. Genes Dev. 2007;21:2055–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ernkvist M, Birot O, Sinha I, Veitonmaki N, Nyström S, Aase K, et al. Differential roles of p80- and p130-angiomotin in the switch between migration and stabilization of endothelial cells. Biochim Biophys Acta. 2008;1783:429–37.

    Article  CAS  PubMed  Google Scholar 

  54. Tsukita S, Furuse M, Itoh M. Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol. 1999;11:628–33.

    Article  CAS  PubMed  Google Scholar 

  55. Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4:225–36.

    Article  CAS  PubMed  Google Scholar 

  56. Roudier E, Chapados N, Decary S, Gineste C, Le Bel C, Lavoie JM, et al. Angiomotin p80/p130 ratio: a new indicator of exercise-induced angiogenic activity in skeletal muscles from obese and non-obese rats? J Physiol. 2009;587:4105–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gagné V, Moreau J, Plourde M, Lapointe M, Lord M, Gagnon E, et al. Human angiomotin-like 1 associates with an angiomotin protein complex through its coiled-coil domain and induces the remodeling of the actin cytoskeleton. Cell Motil Cytoskeleton. 2009;66:754–68.

    Article  PubMed  Google Scholar 

  58. Hultin S, Zheng Y, Mojallal M, Vertuani S, Gentili C, Balland M, et al. AmotL2 links VE-cadherin to contractile actin fibres necessary for aortic lumen expansion. Nat Commun. 2014;5:3743.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng Y, Zhang Y, Barutello G, Chiu K, Arigoni M, Giampietro C, et al. Angiomotin like-1 is a novel component of the N-cadherin complex affecting endothelial/pericyte interaction in normal and tumor angiogenesis. Sci Rep. 2016;6:30622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ernkvist M, Luna Persson N, Audebert S, Lecine P, Sinha I, Liu M, et al. The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood. 2009;113:244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Garnaas MK, Moodie KL, Liu ML, Samant GV, Li K, Marx R, et al. Syx, a RhoA guanine exchange factor, is essential for angiogenesis in Vivo. Circ Res. 2008;103:710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sugihara-Mizuno Y, Adachi M, Kobayashi Y, Hamazaki Y, Nishimura M, Imai T, et al. Molecular characterization of angiomotin/JEAP family proteins: interaction with MUPP1/Patj and their endogenous properties. Genes Cells. 2007;12:473–86.

    Article  CAS  PubMed  Google Scholar 

  63. Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, et al. A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell. 2006;125:535–48.

    Article  CAS  PubMed  Google Scholar 

  64. Yi C, Troutman S, Fera D, Stemmer-Rachamimov A, Avila JL, Christian N, et al. A tight junction-associated Merlin-angiomotin complex mediates Merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell. 2011;19:527–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yi C, Kissil JL. Merlin in organ size control and tumorigenesis: Hippo versus EGFR? Genes Dev. 2010;24:1673–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature. 1993;363:515–21.

    Article  CAS  PubMed  Google Scholar 

  67. Hanemann CO. Magic but treatable? Tumours due to loss of merlin. Brain. 2008;131:606–15.

    Article  CAS  PubMed  Google Scholar 

  68. Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94:1287–312.

    Article  CAS  PubMed  Google Scholar 

  69. Ma S, Meng Z, Chen R, Guan KL. The Hippo Pathway: Biology and Pathophysiology. Annu Rev Biochem. 2019;88:577–604.

    Article  CAS  PubMed  Google Scholar 

  70. Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 2015;25:499–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moya IM, Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019;20:211–26.

    Article  CAS  PubMed  Google Scholar 

  72. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009;138:389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang W, Huang J, Chen J. Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem. 2011;286:4364–70.

    Article  CAS  PubMed  Google Scholar 

  74. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 2011;25:51–63.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W. Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem. 2011;286:7018–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hong W. Angiomotin’g YAP into the nucleus for cell proliferation and cancer development. Sci Signal. 2013;6:pe27.

    Article  PubMed  Google Scholar 

  77. Lv M, Shen Y, Yang J, Li S, Wang B, Chen Z, et al. Angiomotin family members: oncogenes or tumor suppressors? Int J Biol Sci. 2017;13:772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li W, Cooper J, Zhou L, Yang C, Erdjument-Bromage H, Zagzag D, et al. Merlin/NF2 loss-driven tumorigenesis linked to CRL4DCAF1-mediated inhibition of the Hippo pathway kinases Lats1 and 2 in the nucleus. Cancer Cell. 2014;26:48–60.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell. 2013;154:1342–55.

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, Zhou H, Li F, Chan SW, Lin Z, Wei Z, et al. Angiomotin binding-induced activation of Merlin/NF2 in the Hippo pathway. Cell Res. 2015;25:801–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chinthalapudi K, Mandati V, Zheng J, Sharff AJ, Bricogne G, Griffin PR, et al. Lipid binding promotes the open conformation and tumor-suppressive activity of neurofibromin 2. Nat Commun. 2018;9:1338.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Couderc C, Boin A, Fuhrmann L, Vincent-Salomon A, Mandati V, Kieffer Y, et al. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia. 2016;18:10–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang W, Li N, Li X, Tran MK, Han X, Chen J. Tankyrase Inhibitors Target YAP by Stabilizing Angiomotin Family Proteins. Cell Rep. 2015;13:524–32.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang H, Lu B, Castillo J, Zhang Y, Yang Z, McAllister G, et al. Tankyrase Inhibitor Sensitizes Lung Cancer Cells to Endothelial Growth Factor Receptor (EGFR) Inhibition via Stabilizing Angiomotins and Inhibiting YAP Signaling. J Biol Chem. 2016;291:15256–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Troilo A, Benson EK, Esposito D, Garibsingh RA, Reddy EP, Mungamuri SK, et al. Angiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations. Oncotarget. 2016;7:28765–82.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Riffell JL, Lord CJ, Ashworth A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov. 2012;11:923–36.

    Article  CAS  PubMed  Google Scholar 

  87. Campbell CI, Samavarchi-Tehrani P, Barrios-Rodiles M, Datti A, Gingras AC, Wrana JL. The RNF146 and tankyrase pathway maintains the junctional Crumbs complex through regulation of angiomotin. J Cell Sci. 2016;129:3396–411.

    CAS  PubMed  Google Scholar 

  88. Lv M, Li S, Luo C, Zhang X, Shen Y, Sui YX, et al. Angiomotin promotes renal epithelial and carcinoma cell proliferation by retaining the nuclear YAP. Oncotarget. 2016;7:12393–403.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Paramasivam M, Sarkeshik A, Yates JR 3rd, Fernandes MJ, McCollum D. Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell. 2011;22:3725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lv M, Lv M, Chen L, Qin T, Zhang X, Liu P, et al. Angiomotin promotes breast cancer cell proliferation and invasion. Oncol Rep. 2015;33:1938–46.

    Article  CAS  PubMed  Google Scholar 

  91. Jiang WG, Watkins G, Douglas-Jones A, Holmgren L, Mansel RE. Angiomotin and angiomotin like proteins, their expression and correlation with angiogenesis and clinical outcome in human breast cancer. BMC Cancer. 2006;6:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ranahan WP, Han Z, Smith-Kinnaman W, Nabinger SC, Heller B, Herbert BS, et al. The adaptor protein AMOT promotes the proliferation of mammary epithelial cells via the prolonged activation of the extracellular signal-regulated kinases. Cancer Res. 2011;71:2203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeng H, Ortiz A, Shen PF, Cheng CJ, Lee YC, Yu G, et al. Angiomotin regulates prostate cancer cell proliferation by signaling through the Hippo-YAP pathway. Oncotarget. 2017;8:10145–60.

    Article  PubMed  Google Scholar 

  94. Mojallal M, Zheng Y, Hultin S, Audebert S, van Harn T, Johnsson P, et al. AmotL2 disrupts apical-basal cell polarity and promotes tumour invasion. Nat Commun. 2014;5:4557.

    Article  CAS  PubMed  Google Scholar 

  95. Zhou Y, Zhang J, Li H, Huang T, Wong CC, Wu F, et al. AMOTL1 enhances YAP1 stability and promotes YAP1-driven gastric oncogenesis. Oncogene. 2020;39:4375–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xu G, Seng Z, Zhang M, Qu J. Angiomotin-like 1 plays a tumor-promoting role in glioma by enhancing the activation of YAP1 signaling. Environ Toxicol. 2021;36:2500–11.

    Article  CAS  PubMed  Google Scholar 

  97. Ortiz A, Lee YC, Yu G, Liu HC, Lin SC, Bilen MA, et al. Angiomotin is a novel component of cadherin-11/β-catenin/p120 complex and is critical for cadherin-11-mediated cell migration. Faseb j. 2015;29:1080–91.

    Article  CAS  PubMed  Google Scholar 

  98. Mack NA, Georgiou M. The interdependence of the Rho GTPases and apicobasal cell polarity. Small GTPases. 2014;5:10.

    Article  PubMed  Google Scholar 

  99. Wang Y, Justilien V, Brennan KI, Jamieson L, Murray NR, Fields AP. PKCι regulates nuclear YAP1 localization and ovarian cancer tumorigenesis. Oncogene. 2017;36:534–45.

    Article  CAS  PubMed  Google Scholar 

  100. Hsu YL, Hung JY, Chou SH, Huang MS, Tsai MJ, Lin YS, et al. Angiomotin decreases lung cancer progression by sequestering oncogenic YAP/TAZ and decreasing Cyr61 expression. Oncogene. 2015;34:4056–68.

    Article  CAS  PubMed  Google Scholar 

  101. Li D, Shen Y, Ren H, Wang L, Yang J, Wang Y. Angiomotin-p130 inhibits vasculogenic mimicry formation of small cell lung cancer independently of Smad2/3 signal pathway. J Bioenerg Biomembr. 2021;53:295–305.

    Article  CAS  PubMed  Google Scholar 

  102. Chen X, Lu Y, Guo G, Zhang Y, Sun Y, Guo L. et al. AMOTL2‑knockdown promotes the proliferation, migration and invasion of glioma by regulating β‑catenin nuclear localization. Oncol Rep. 2021;46:139.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sang T, Yang J, Liu J, Han Y, Li Y, Zhou X, et al. AMOT suppresses tumor progression via regulating DNA damage response signaling in diffuse large B-cell lymphoma. Cancer Gene Ther. 2021;28:1125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hakami F, Darda L, Stafford P, Woll P, Lambert DW, Hunter KD. The roles of HOXD10 in the development and progression of head and neck squamous cell carcinoma (HNSCC). Br J Cancer. 2014;111:807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PA and JK conducted literature reviews and wrote the manuscript. PA contributed origainl figures. JK conducted final editing.

Corresponding author

Correspondence to Joseph Kissil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirifar, P., Kissil, J. The role of Motin family proteins in tumorigenesis—an update. Oncogene 42, 1265–1271 (2023). https://doi.org/10.1038/s41388-023-02677-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02677-8

Search

Quick links