Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PRMT5 methylating SMAD4 activates TGF-β signaling and promotes colorectal cancer metastasis

Abstract

Perturbations in transforming growth factor-β (TGF-β) signaling can lead to a plethora of diseases, including cancer. Mutations and posttranslational modifications (PTMs) of the partner of SMAD complexes contribute to the dysregulation of TGF-β signaling. Here, we reported a PTM of SMAD4, R361 methylation, that was critical for SMAD complexes formation and TGF-β signaling activation. Through mass spectrometric, co-immunoprecipitation (Co-IP) and immunofluorescent (IF) assays, we found that oncogene protein arginine methyltransferase 5 (PRMT5) interacted with SMAD4 under TGF-β1 treatment. Mechanically, PRMT5 triggered SMAD4 methylation at R361 and induced SMAD complexes formation and nuclear import. Furthermore, we emphasized that PRMT5 interacting and methylating SMAD4 was required for TGF-β1-induced epithelial-mesenchymal transition (EMT) and colorectal cancer (CRC) metastasis, and SMAD4 R361 mutation diminished PRMT5 and TGF-β1-induced metastasis. In addition, highly expressed PRMT5 or high level of SMAD4 R361 methylation indicated worse outcomes in clinical specimens analysis. Collectively, our study highlights the critical interaction of PRMT5 and SMAD4 and the roles of SMAD4 R361 methylation for controlling TGF-β signaling during metastasis. We provided a new insight for SMAD4 activation. And this study indicated that blocking PRMT5-SMAD4 signaling might be an effective targeting strategy in SMAD4 wild-type CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRMT5 methylates Smad4 at R361.
Fig. 2: PRMT5 promotes the formation of SMAD complexes dependent on methylation of SMAD4 at R361.
Fig. 3: The methylation of SMAD4 at R361 facilitates SMAD complexes’ nuclear import.
Fig. 4: PRMT5 promotes TGF-β-induced EMT and metastasis of CRC in vitro.
Fig. 5: Targeting the methylation of SMAD4 at R361 inhibits CRC metastasis in vivo.
Fig. 6: The level of SMAD4 R361me2s can be used as a prognostic indicator for colorectal cancer.

Similar content being viewed by others

Data availability

Source data of mass spectrometric analyses are provided with this paper. Other data that support the findings are available from the corresponding author upon reasonable request.

References

  1. Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50:924–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Massagué J. TGFβ in cancer. Cell. 2008;134:215–30.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 2018;14:111–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Colak S, ten Dijke P. Targeting TGF-β signaling in cancer. Trends Cancer. 2017;3:56–71.

    Article  CAS  PubMed  Google Scholar 

  5. Xu J, Lamouille S, Derynck R. TGF-Β-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–72.

    Article  CAS  PubMed  Google Scholar 

  6. Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 1999;18:3098–103.

    Article  CAS  PubMed  Google Scholar 

  7. Chen HB, Rud JG, Lin K, Xu L. Nuclear targeting of transforming growth factor-β-activated Smad complexes. J Biol Chem. 2005;280:21329–36. https://doi.org/10.1074/jbc.M500362200.

    Article  CAS  PubMed  Google Scholar 

  8. Van Hattem WA, Brosens LAA, De Leng WWJ, Morsink FH, Lens S, Carvalho R, et al. Large genomic deletions of SMAD4, BMPR1A and PTEN in juvenile polyposis. Gut. 2008;57:623–7.

    Article  PubMed  Google Scholar 

  9. Langeveld D, Van Hattem WA, De Leng WWJ, Morsink FH, Ten Kate FJW, Giardiello FM, et al. SMAD4 immunohistochemistry reflects genetic status in juvenile polyposis syndrome. Clin Cancer Res. 2010;16:4126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73:725–35.

    Article  CAS  PubMed  Google Scholar 

  11. Huang C, Hu F, Song D, Sun X, Liu A, Wu Q, et al. EZH2-triggered methylation of SMAD3 promotes its activation and tumor metastasis. J Clin Investig. 2022;132:e152394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wrighton KH, Lin X, Feng XH. Phospho-control of TGF-β superfamily signaling. Cell Res. 2009;19:8–20.

    Article  CAS  PubMed  Google Scholar 

  13. Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, et al. Germ-layer specification and control of cell growth by ectodermin, a Smad4 ubiquitin ligase. Cell. 2005;121:87–99.

    Article  CAS  PubMed  Google Scholar 

  14. Morén A, Imamura T, Miyazono K, Heldin CH, Moustakas A. Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem. 2005;280:22115–23.

    Article  PubMed  Google Scholar 

  15. Lee PSW, Chang C, Liu D, Derynck R. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-β family signaling. J Biol Chem. 2003;278:27853–63.

    Article  CAS  PubMed  Google Scholar 

  16. Lin X, Liang M, Liang YY, Brunicardi FC, Melchior F, Feng XH. Activation of transforming growth factor-β signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J Biol Chem. 2003;278:18714–9.

    Article  CAS  PubMed  Google Scholar 

  17. Carlson SM, Gozani O. Emerging technologies to map the protein methylome. J Mol Biol. 2014;426:3350–62. https://doi.org/10.1016/j.jmb.2014.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Albert M, Helin K. Histone methyltransferases in cancer. Semin Cell Dev Biol. 2010;21:209–20. https://doi.org/10.1016/j.semcdb.2009.10.007.

    Article  CAS  PubMed  Google Scholar 

  19. Biggar KK, Li SSC. Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol. 2015;16:5–17.

    Article  CAS  PubMed  Google Scholar 

  20. Wu Q, Schapira M, Arrowsmith CH, Barsyte-Lovejoy D. Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov. 2021;20:509–30. https://doi.org/10.1038/s41573-021-00159-8.

    Article  CAS  PubMed  Google Scholar 

  21. Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer. 2015;15:110–24. https://doi.org/10.1038/nrc3884.

    Article  CAS  PubMed  Google Scholar 

  22. Jarrold J, Davies CC. PRMTs and arginine methylation: cancer’s best-kept secret? Trends Mol Med. 2019;25:993–1009. https://doi.org/10.1016/j.molmed.2019.05.007.

    Article  CAS  PubMed  Google Scholar 

  23. Blanc RS, Richard S. Arginine methylation: the coming of age. Mol Cell. 2017;65:8–24.

    Article  CAS  PubMed  Google Scholar 

  24. Guccione E, Richard S. The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol. 2019;20:642–57. https://doi.org/10.1038/s41580-019-0155-x.

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez-Paredes M, Lyko F. The importance of non-histone protein methylation in cancer therapy. Nat Rev Mol Cell Biol. 2019;20:569–70. https://doi.org/10.1038/s41580-019-0147-x.

    Article  CAS  PubMed  Google Scholar 

  26. Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci. 2015;72:2041–59. https://doi.org/10.1007/s00018-015-1847-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Hu W, Yuan Y. Protein arginine methyltransferase 5 (PRMT5) as an anticancer target and its inhibitor discovery. J Med Chem. 2018;61:9429–41.

    Article  CAS  PubMed  Google Scholar 

  28. Kim H, Ronai ZA. PRMT5 function and targeting in cancer. Cell Stress. 2020;4:199–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi Y, Hata A, Lo RS, Massagué J, Pavletich NP. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 1997;388:87–93.

    Article  CAS  PubMed  Google Scholar 

  30. Inman GJ, Nicolás FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol Cell. 2002;10:283–94.

    Article  CAS  PubMed  Google Scholar 

  31. Xu P, Lin X, Feng XH. Posttranslational regulation of smads. Cold Spring Harb Perspect Biol. 2016;8:1–28.

    Article  Google Scholar 

  32. Wang F, Xia X, Yang C, Shen J, Mai J, Kim HC, et al. SMAD4 gene mutation renders pancreatic cancer resistance to radiotherapy through promotion of autophagy. Clin Cancer Res. 2018;24:3176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oyanagi H, Shimada Y, Nagahashi M, Ichikawa H, Tajima Y, Abe K, et al. SMAD4 alteration associates with invasive-front pathological markers and poor prognosis in colorectal cancer. Histopathology. 2019;74:873–82.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wesche J, Kühn S, Kessler BM, Salton M, Wolf A. Protein arginine methylation: a prominent modification and its demethylation. Cell Mol Life Sci. 2017;74:3305–15.

    Article  CAS  PubMed  Google Scholar 

  35. Hao Y, Baker D, Ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 2019;20:2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ilyas M, Efstathiou JA, Straub J, Kim HC, Bodmer WF. Transforming growth factor β stimulation of colorectal cancer cell lines: Type II receptor bypass and changes in adhesion molecule expression. Proc Natl Acad Sci USA. 1999;96:3087–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morén A, Raja E, Heldin CH, Moustakas A. Negative regulation of TGFβ signaling by the kinase LKB1 and the scaffolding protein LIP1. J Biol Chem. 2011;286:341–53.

    Article  PubMed  Google Scholar 

  38. Seong HA, Jung H, Ha H. Murine protein serine/threonine kinase 38 stimulates TGF-β signaling in a kinase-dependent manner via direct phosphorylation of smad proteins. J Biol Chem. 2010;285:30959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MAS, Massagué J. Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell. 2006;125:929–41.

    Article  CAS  PubMed  Google Scholar 

  40. Xi Q, Wang Z, Zaromytidou AI, Zhang XHF, Chow-Tsang LF, Liu JX, et al. A poised chromatin platform for TGF-β access to master regulators. Cell. 2011;147:1511–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang G, Long J, Gao Y, Zhang W, Han F, Xu C, et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nat Cell Biol. 2019;21:214–25. https://doi.org/10.1038/s41556-018-0266-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song D, Lan J, Chen Y, Liu A, Wu Q, Zhao C, et al. NSD2 promotes tumor angiogenesis through methylating and activating STAT3 protein. Oncogene. 2021;40:2952–67.

    Article  CAS  PubMed  Google Scholar 

  43. Gao J, Liu R, Feng D, Huang W, Huo M, Zhang J, et al. Snail/PRMT5/NuRD complex contributes to DNA hypermethylation in cervical cancer by TET1 inhibition. Cell Death Differ. 2021;28:2818–36. https://doi.org/10.1038/s41418-021-00786-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang N, Yan H, Wu D, Zhao Z, Chen X, Long Q, et al. PRMT5/Wnt4 axis promotes lymph-node metastasis and proliferation of laryngeal carcinoma. Cell Death Dis. 2020;11:864.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhu F, Guo H, Bates PD, Zhang S, Zhang H, Nomie KJ, et al. PRMT5 is upregulated by B-cell receptor signaling and forms a positive-feedback loop with PI3K/AKT in lymphoma cells. Leukemia. 2019;33:2898–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rasco D, Tolcher A, Siu LL, Heinhuis K, Postel-Vinay S, Barbash O, et al. Abstract CT038: A phase I, open-label, dose-escalation study to investigate the safety, pharmacokinetics, pharmacodynamics, and clinical activity of GSK3326595 in subjects with solid tumors and non-Hodgkin’s lymphoma. Cancer Res. 2017. 77 (13_Supplement): CT038.

  47. AbuHammad S, Cullinane C, Martin C, Bacolas Z, Ward T, Chen H, et al. Regulation of PRMT5-MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma. Proc Natl Acad Sci USA. 2019;116:17990–18000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo Y, Gao Y, Liu W, Yang Y, Jiang J, Wang Y, et al. Myelocytomatosis-protein arginine N-methyltransferase 5 axis defines the tumorigenesis and immune response in hepatocellular carcinoma. Hepatology. 2021;74:1932–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (No. 2022YFA1105303 GW) and National Natural Science Foundation of China (NSFC) (Nos. 81922053 GW, 81974432 GW, 81874186 JH, No. 82273254 JH, No. 82260521 XS) and Hubei Provincial Finance Department (SCZ202203 GW). We would like to acknowledge the support from the Molecular Medical Center of Tongji Hospital, Huazhong University of Science and Technology. We appreciate the assistance from members of Guihua Wang’s laboratory and Junbo Hu’s laboratory. We thank the Protein Chemistry and Proteomics Facility, Tsinghua University for the contribution of mass spectrometric analyses.

Author information

Authors and Affiliations

Authors

Contributions

GW and JH designed the research. AL performed the majority of the experiments. QW, YC, CH and XL helped analyze the data. DS and XWS contributed to the bioinformatics analysis. ML and ZW collected clinical samples. CQ and CY performed most of the phenotype experiments. KW, LL and KL assisted in animal experiments. CZ and HD did the mass spectrometry detection and analysis. XLS, SL, XLL and FX provided advice for our study. All authors approved this study.

Corresponding authors

Correspondence to Junbo Hu or Guihua Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Yu, C., Qiu, C. et al. PRMT5 methylating SMAD4 activates TGF-β signaling and promotes colorectal cancer metastasis. Oncogene 42, 1572–1584 (2023). https://doi.org/10.1038/s41388-023-02674-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02674-x

Search

Quick links