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Immunotherapies have revolutionized cancer treatment modalities; however, predicting clinical response accurately and reliably
remains challenging. Neoantigen load is considered as a fundamental genetic determinant of therapeutic response. However, only
a few predicted neoantigens are highly immunogenic, with little focus on intratumor heterogeneity (ITH) in the neoantigen
landscape and its link with different features in the tumor microenvironment. To address this issue, we comprehensively
characterized neoantigens arising from nonsynonymous mutations and gene fusions in lung cancer and melanoma. We developed
a composite NEO2IS to characterize interplays between cancer and CD8+ T-cell populations. NEO2IS improved prediction accuracy
of patient responses to immune-checkpoint blockades (ICBs). We found that TCR repertoire diversity was consistent with the
neoantigen heterogeneity under evolutionary selections. Our defined neoantigen ITH score (NEOITHS) reflected infiltration degree
of CD8+ T lymphocytes with different differentiation states and manifested the impact of negative selection pressure on CD8+
T-cell lineage heterogeneity or tumor ecosystem plasticity. We classified tumors into distinct immune subtypes and examined how
neoantigen-T cells interactions affected disease progression and treatment response. Overall, our integrated framework helps
profile neoantigen patterns that elicit T-cell immunoreactivity, enhance the understanding of evolving tumor-immune interplays
and improve prediction of ICBs efficacy.
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INTRODUCTION
Immunotherapy has been an essential component of cancer
treatment in recent decades [1]. Many prominent breakthroughs
have been made in the field of cancer immunotherapy, especially
the discovery of immune-checkpoint blockade (ICB) inhibitors
targeting cytotoxic T-lymphocyte-associated protein (CTLA-4) and
programmed cell death protein 1/programmed cell death protein
ligand 1 (PD1/PDL1) [1]. Over the past decade, anti-PD1/PDL1
blockades have demonstrated remarkable clinical efficacy in non-
small-cell lung cancer (NSCLC) and melanoma. Currently, tumor
mutation burden (TMB) and PDL1 expression have been widely
applied as important biomarkers of ICB treatment response and
are often used as validated indicators to assist clinical decisions
[2, 3]. Unfortunately, due to complex resistance mechanisms and a
lack of consensus on cut-off values, they are insufficient to
accurately predict clinical benefit of immunotherapy [4]. In
addition to ICB therapies, adoptive T cell therapy and tumor
vaccines are also common forms of immunotherapies. The basic
mechanism is that T cells can destroy tumor cells via recognition
of tumor neoantigens presented by the major histocompatibility
complex (MHC) molecules [5]. Neopeptides generated by tumor-
specific nonsynonymous mutations (NSMs) are ideal immunother-
apy targets as they can be recognized as foreign proteins and
elicit a neoantigen-specific cytotoxic T-cell response [6]. Therefore,

beyond TMB and PDL1 expression, tumor neoantigen load has
also been considered a potential determinant of the clinical
response to ICBs.
Recently, several studies have focused predominantly on NSMs-

containing neoantigens identified by whole-exome sequencing
(WES) data from paired tumor and normal samples [7–9].
However, these studies ignored neoantigens originating from
other genetic variations across the tumor genome, such as fusion
genes. Theoretically, gene fusions can serve as ideal sources of
neoantigens because they can form new open reading frames
(ORFs) and produce plentiful neopeptides [10]. Therefore, in this
study, we comprehensively investigated the contribution of three
different types of somatic mutations, namely single-nucleotide
variants (SNVs), insertion and deletions (indels) and fusion genes,
to T cell recognition towards neopeptides. By taking into account
the immunogenicity of above three classes of neoantigens, we
linked three neoantigen load scores (NLS) to immune infiltration
and CD8+ T cell exhaustion in tumors, and calculated a composite
neoantigen load score (NEO2IS) to represent immunogenic
potentials of predicted neoantigens. By analyzing 5 external ICB
cohort data, we demonstrated that tumors with higher NEO2IS
exhibited favorable clinical efficacy of immunotherapy and this
score also improved the accuracy of predictions of treatment
response.
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Tumor development and metastatic progression is a Darwinian
evolutionary process, involving the interplay between cancer
subclones and the local immune microenvironment [11]. Multi-
regional tumor sampling helps characterize genetic heterogeneity
within individual tumors, i.e., intratumor heterogeneity or ITH [12].
Previous studies have highlighted that clonal and subclonal
neoantigens do not drive equally effective antitumor immunity
[13]. Recent advances in single-cell transcriptomes have been
made new insights regarding dysfunctional states, spatial
arrangement, and the modulation by ICB of antigen-specific
CD8+ T cells [14]. More emergent data now consider exhausted
CD8+ T cells (CD8+ Tex) as a developmental continuum, where the
lineage is comprised of ICB permissive and refractory subsets
termed stem-like CD8+ Tex progenitors and terminally differen-
tiated cells, with progressive loss of effector functions and
ultimately culminated in apoptosis [14, 15]. By evaluating each
tumor’s neoantigen ITH score (NEOITHS), we found a consistency
between neoantigen diversity and the heterogeneity within the
CD8+ tumor-infiltrating lymphocytes (TILs) lineage [15], as well as
associations of TCR diversity and NEOITHS with clinical outcomes
of cancer patients. We further classified included tumors into four
different immune subtypes and explored how selection pressures
from different tumor microenvironment (TMEs) affected immune
surveillance and degree of ITH delineating different T cell
subpopulations. We also analyzed how neoantigen-T cells
interactions as measured by the above two metrics affected
disease progression and response to treatment. We believe that
the NEO2IS, NEOITHS and immune subtypes from our study hold
promise as potentially valuable tools for predicting clinical
response to cancer immunotherapy.

RESULTS
Identification of neoantigen candidates in lung cancer and
melanoma
Neopeptides arising from SNVs, indels and fusion genes were
identified from TCGA WES and RNA-seq data using our screening
approach (Fig. 1A). The top-ranked frequent neoantigens
predicted to strongly bind to patient’s MHC class I molecules are
shown in Fig. S1. Among them, the top-ranked immunogenic
neoepitopes were potential targets for cancer immunotherapy,
including MSS51H359_S3:AAFHPGFHM, KRASG12D:GADGVGKSAL,
TP53R158L:STPPPGTRVL and EML4-ALK:LAFSGIMIV identified in lung
cancer (Fig. 1B); PIP5K1CL302Rfs*81: RSGTAWSW, BRAFV600M:IGDF-
GLATM, BNC2-C9orf92:GPTPPPHSL and CLTC-VMP1:RAKLAVQKL in
melanoma (Fig. 1B). Furthermore, an indel mutation in TCGA-LUNG
yielded far more neoantigen candidates than a point mutation or
fusion gene did, while neoantigens derived from each of SNVs in
TCGA-SKCM were more than those from each of fusions and indels
(Fig. S1b).

Association of neoantigen load scores with immune
infiltration
We next evaluated the relationship between the NLS and immune
signatures. Multivariate linear regression analysis of gene expres-
sion levels in TCGA samples was consequently performed using
each NLS together with sex, age and tumor purity. We observed
positive correlations between three types of NLS and T-cell
receptor-associated gene expression signatures, such as CD8A,
CD3G, CCL5, TIGT, LCK and IKZF3 in lung cancers and primary
melanomas after adjusting clinical factors (Figs. 2A, S2a). Interest-
ingly, immune infiltration was found to significantly associate with
high NLS, especially exhausted-like CD8+ T cells and activated
CD4+ T cells (Figs. 2B, S2a).
Considering that the identified neoepitopes were all specific for

CD8+ T lymphocytes’ recognition and significant enrichment of
exhausted state of CD8+ T cells were observed, we then estimated
the infiltration of CD8+ Tex based on two scRNA-seq datasets

(Fig. S2b). Our results showed that three types of normalized NLS
[log2(NLS+ 1)] correlated closely with CIBERSORTx-estimated
CD8+ Tex fractions within both TCGA-LUNG and SKCM samples
(Figs. 2C, S2c). Subsequently, we constructed CD8-Tex models to
examine the contributions of predicted neoantigens to immunor-
eactivity and CD8+ T-cell depletion due to persistent antigens in
the TME. Based on the multivariate regression analysis, a
composite NEO2IS was calculated (Fig. 2C) using NLS to delineate
different differentiation status of CD8+ TILs at different TMEs (i.e.,
immunologically active or suppressive). Linear models were
retained as they yielded better accuracy than SVR and GBM
models when we tested them on external datasets (SMC and
Abbott, Fig. S2f).

Prediction of immunotherapy efficacy in tumors using NEO2IS
WES or bulk RNA-seq data from 2 NSCLC and 3 melanoma
immunotherapy cohorts were analyzed using our neoantigen
prediction pipeline. Neoantigens were highly sparse and infre-
quently shared between those patients. The top-ranked frequent
neoantigens inferred from ICB cohorts were shown in Fig. S3.
Figure 3A shows that STVQLIMQL, ITDFGRAKL and FGNMTRVYY
derived from EGFRT790M, EGFRL858R, and CTSC-RAB38 respectively
in NSCLC, MAGEC1G437D-derived SAFEDFPQSPL and BCR-ALK-
derived SSIPVTASL in melanoma were the top-ranked immuno-
genic neoantigens. Furthermore, each SNV or an indel in both two
combined immunotherapy datasets generated far more neoanti-
gens than each fusion gene did (p value <0.05, Fig. S3b).
We next evaluated NEO2IS of these samples and found it

significantly associated with patients’ treatment response (p value
<0.05, Fig. 3B) and favorable survivals (log-rank p value <0.05,
Fig. 3C). It should be noted that both higher NEO2IS and higher
TMB showed significant correlation with improved clinical
response in NSCLC (SMC, Rizvi) and melanoma (Amato, Snyder)
cohorts (Fig. 3B, C). However, TMB failed to predict response to
ICBs (p value= 0.23, Fig. 3B) and prognosis of melanoma patients
in Abbott cohort (log-rank p value= 0.3, Fig. 3C) as well as overall
survivals of SMC NSCLC patients (log-rank p value= 0.1, Fig. 3C).
Fusion-derived NLSs were significantly higher in responders than
non-responders, while no significant association between clinical
response and SNV&indel NLS were observed in Abbott cohort (Fig.
3D). Moreover, we reasoned that our score scheme is employed to
evaluate the immunogenic potential of the SNV and indel as well
as the fusion-based candidate neoantigens. Therefore, NEO2IS
showed a superior predictive power of clinical efficacy compared
with TMB as seen from the ROC curves (Fig. 3E, F). When
dichotomizing NSCLC and melanoma ICB data uniformly with cut-
points of TMB > top quintile of cohort TMB and NEO2IS >median
of cohort NEO2IS, respectively, we found NEO2IS could still predict
prognosis of two ICB cohorts while TMB failed to stratify clinical
efficacy of melanoma patients (Fig. S3c).

Molecular features associated with neoantigen score
signature in tumors
To better understand the molecular mechanisms behind above
correlations, we inspected the underlying biological structures
involved in immunogenicity in the TME and investigate inter-
pretation for current intriguing observations. GSVA was performed
on TCGA tumor datasets to assess the relationship between
NEO2IS and molecular features. DNA replication, homologous
recombination, mismatch repair (MMR), cell cycle, nucleotide
excision repair, base excision repair (BER) and nonhomologous
end-joining were significantly upregulated in tumors with high
NEO2IS (Figs. 4A, S4a). This suggested that a high neoantigen load
score was associated with the activation of the cell cycle, DNA
replication and DNA damage repair (DDR) pathways.
It’s reported that improved efficacy of ICBs was independently

associated with alterations in DDR pathways [16]. To determine
whether NEO2IS could explain the differential pathways analyzed
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above, we subsequently focused on investigating the relevance of
DDR pathway-related genes with the neoantigen signatures
reflected by this score. We found that the mutation frequencies
in POLE and MMR-related genes (including MSH2, MSH6, MLH1
and PMS2) were significantly increased in the NEO2IS-high groups
(Figs. 4A, S4a). Raised abundance of proteins (TCGA RPPA data)
involved in cell cycle and DDR pathways was found to significantly

correlate with higher NEO2IS (Fig. 4B). Higher ploidy was also
observed in tumors with higher NEO2IS (Figs. 4C, S4b). This
reflected higher genomic instability and more DNA replication
stress in such tumors, resulting in an increased number of
neoepitopes and making them potential responders to anti-PD1
therapies [16]. Furthermore, we examined the immunogenic
potential reflected in the neoantigen signatures using

Fig. 1 The workflow of neoantigen prediction and neoantigen load score calculation. A Somatic mutations and structural variants were
detected using WES and RNA-seq data. Translated proteins were chopped into 8–11 kmers peptides encompassing the mutated residues (for
SNVs and indels) and fusion breakpoint (for fusions) until a stop codon. Mutated peptides with binding affinity <0.5 % Rank determined by
NetMHCpan were considered as candidate neoantigens. The neoantigen load score was calculated based on outputs of deepHLApan model.
B Representative immunogenic neoantigens identified in TCGA-LUNG and TCGA-SKCM cohort.
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transcriptome data from validation cohorts. Prominent enrich-
ment of DDR and immunomodulatory pathways was observed in
both NEO2IS-high NSCLCs and melanomas (Figs. 4C, S4c). These
included DNA repair, Class I MHC-mediated antigen processing
and presentation, DNA double strand break repair, adaptive
immune system, cytokine signaling in immune system, cytokine
signaling in immune system, antigen processing: ubiquitination
proteasome degradation, and TCR signaling pathway, suggesting
the possible priming and expansion of neoantigen-reactive T cells
against persistent antigens in those tumors. Intriguingly, mRNA
expression levels of T-effector and INFγ-related gene signatures
(GZMB, INFG, STAT1, CXCL9 and CXCL10) and PDL1 were also
saliently associated with NEO2IS (Figs. 4D, S4c, d). Moreover,
significantly increased protein abundance of PDL1, attenuated
expression of pY705 STAT3 and STAT5A was related with high
NEO2IS in NSCLCs (Fig. 4D). PDL1 intensity was also linked to the
neoantigen signature in Rizvi samples (Fig. 4D), reflecting
inflammation status or infiltrated-inflamed TME of immunologi-
cally ‘hot’ tumors [17], and potentially concomitant inhibition on
antitumor T cell response through constitutively expressing PDL1
by cancer cells [18, 19].
In addition to PDL1, other inhibitory checkpoints (PDCD1,

CTLA4, LAG3, TIGIT, CD160, BTLA, CD44 and HAVCR2) were also
significantly correlated with the NEO2IS (Figs. 4E, S4e), implying
that terminal differentiation of CD8+ Tex is driven by constantly
elevated antigen load in tumors. More interestingly, somatic loss
of heterozygosity (LOH) at the HLA-I gene locus and mutations in
B2M or at least one HLA-I gene (Figs. 4F, S4e) were both
associated with higher NEO2IS in NSCLCs and melanomas. These
results suggest that the characteristics of high NEO2IS are more
frequently presented in tumors with immune evasion or more
immune-depleted TME. The growth of those tumors was thus
unrestrained and became clinically apparent; for instance, higher

NEO2IS was found in those with larger size and metastatic lesions
(Fig. 4F). Also, numerous inhibitory checkpoints and immunosup-
pressive factors had increased expression in metastatic tumors
compared with the primary lesion (Fig. 4F). Similar observations
were reported by Braun et al. They found that PDCD1, HAVCR2
and LAG3 expression increased substantially late in pseudotime
and CD8+ T cells became progressively dysfunctional with
advancing disease in clear cell renal cell carcinoma (ccRCC) [20].
This further demonstrates the contribution of NEO2IS to
characterizing interactions between cancer cells and CD8+ TILs.

Neoantigen evolution and neoantigen-T cell interactions
To inquire into impact of intratumor heterogeneity (ITH) on
immunotherapy response and more resistance mechanisms, we
subsequently evaluated the neoantigen ITH score (NEOITHS) for
each tumor. Given that CD8+ T cell comprises multiple
interconnected subpopulations, we examined CIBERSORTx frac-
tions of four major CD8+ T cell subclusters from scRNA-seq
datasets (Fig. 5A) and all bulk RNA-seq data (Fig. S5a). We further
linked these scores to the heterogeneity within the CD8+ TIL
lineage caught in an in vivo détente against the progressively
growing tumor [15]. Surprisingly, more effector/memory cells and
progenitor CD8+ Tex were identified in TCGA tumors with higher
NEOITHS, while terminally exhausted cell population abundance
showed in opposite direction (Fig. 5B). Furthermore, increased
enrichment of terminally exhausted-like TILs was detected in
NSCLC and melanoma samples with lower NEOITHS in validation
datasets, whereas tumors with more heterogeneous neoantigens
were enriched with activated TILs, effector/memory CD8+ T cell
and progenitor CD8+ Tex (Fig. 5C). Unlike aforementioned NEO2IS,
we observed heightened expression of several immune-
checkpoint molecules in tumors with lower NEOITHS (Fig. 5D).
Moreover, this score was also associated with better prognosis of

Fig. 2 Association of neoantigen load score (NLS) with immune infiltration and construction of CD8-Tex model. A Heatmap depicting the
correlations of mRNA expression levels of T cell receptor-related gene signatures with NLS of three types in TCGA-LUNG. Significant regression
coefficient is indicated by *P < 0.05; **P < 0.01; ***P < 0.001. B Heatmap of GSEA normalized enrichment scores (NESs) for immune cell marker
genes. Specifically, for each of three classes of NLS (fusion, SNV and indel), GSEA was performed on genes ranked by the t value from each
linear regression model. Gene signatures with q-value <0.3 are retained and color-scaled. C The correlations of SNV-, indel- and fusion-derived
NLS with CIBERSORTx-inferred exhausted CD8+ T cells in TCGA-LUNG samples. D The overview of multivariate linear regression approach
modeling both tumor features and CD8+ T-cell exhaustion. The NLS of three types was denoted as x1, x2 and x3, respectively. The integrated
neoantigen model (CD8-Tex) was fit to estimate the overall immunogenicity of predicted neoantigens and represent the degree of
neoantigen-based CD8+ T-cell exhaustion in TME.
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Fig. 3 Evaluation of immunotherapeutic efficacy in tumors using the neoantigen model. A Overview of representative neoantigens
detected in all NSCLC and melanoma samples from ICB cohorts. B The NEO2IS is significantly higher in responders compared with
nonresponders (p value <0.05) and shows stronger association with treatment response than TMB in both lung cancers and melanomas.
C Kaplan–Meier curves of RFS and OS in patients with high and low NEO2IS or TMB in lung cancer (left panel) and melanoma (right panel) ICB
cohorts (quantiles or medians of cohort NEO2IS and TMB used as cut-off points). D Comparison of NLS between responding patients and
nonresponding patients in Abbott melanoma cohort. E ROC curves for NEO2IS and TMB in 2 lung cancer cohorts and the combined NSCLC
samples. F ROC curves for NEO2IS and TMB in 3 melanoma cohorts and their combined samples.

R. Luo et al.

1917

Oncogene (2023) 42:1913 – 1925



NSCLC patients receiving ICB treatments (Fig. 5E). Although no
association of this score and TCR diversity with relapse-free
survivals was observed, NEOITHS predicted overall survivals in
melanoma patients (Fig. 5E). To better understand the broader
implication of evolution dynamics of neoantigens and
neoantigen-T cell interactions, we analyzed the TCR repertoire of
T cells in tumors from RNA-seq data and sought to determine the
relationship between distinct TIL populations and TCR diversity
measurements. Intriguingly, clonotypic diversity estimated by
normalized Shannon index was positively associated with effector/
memory TILs or progenitor CD8+ Tex while inversely correlated
with terminally CD8+ Tex (Fig. 5F). These data suggest that
NEOITHS can delineate infiltration degree of CD8+ T-cell with
different differentiation states, and this metric might also reflect
the diverse TCR repertoires recognizing neoantigens(Fig. 5F).
Subsequently, we explored how persistent load and the

heterogeneity of neoantigens influenced on immunomodulatory
sensitivity. Given above-mentioned observations that T cell-
inflamed gene signatures and immune-escape were associated
with a higher likelihood of high NEO2IS presence, we defined four
categories of neoantigen-T cell interactions under heterogeneous
immune-mediated negative selection pressures (Fig. 5G), namely,
C1 (high NEO2IS & high NEOITH), C2 (high NEO2IS & low NEOITHS),
C3 (low NEO2IS low & high NEOITHS) and C4 (low NEO2IS & low
NEOITH). The corresponding T cell states and TME characteristics
of C1-C4 tumors also varied substantially, as inferred from their
distinct cell subpopulations (Fig. 5H). C1 and C2 with chronic
antigenic exposure were both the infiltrated-inflamed type (so-
called ‘hot’ tumors) as their TMEs were enriched in CTLs. C2
tumors (highly immunosuppressive, high ISP) displayed a more
prominent terminally CD8+ Tex phenotype, while C1 (low ISP) was
observed with a relatively lower abundance of Tregs in view of

heterogenous neoantigen signals. C3 and C4 were both immu-
nologically ‘cold’ tumors with low NEO2IS. C3 (infiltrated-excluded
and high ISP) exhibited the highest fractions of suppressive M2
macrophages and Tregs. Whereas C4 tumors (immune-desert)
with a dormancy phenotype had a relatively lower levels of HLA/
B2M gene expression, NKT and dendritic cell infiltration than C3.
We next determined whether distinct immune subtypes exhibited
differences in treatment response driven by the mechanism of
reversing T-cell exhaustion. When combined two high ISP
subtypes (C2 and C3) together, a significant difference of clinical
benefit to ICBs and prognosis was seen between C1, C2/C3, and
C4 tumors (Fig. 5I). As expected, C4 had the poorest outcomes to
immunotherapy owing to defects in the molecular machinery for
antigen presentation. High ISP groups exhibited resistance to anti-
PD1 inhibitors and poor prognosis in terms of enrichment for
immunosuppressive cells and terminally exhausted CD8+ T cells,
indicating that these dysfunctional immune subpopulations in the
TME may contribute to ICB refractoriness. Tumor clonal architec-
ture is sculpted by immunoediting. C1 tumors with both high
NEO2IS and NEOITHS were deemed as immune-escaped and to
experience stronger immune-mediated negative selection pres-
sures (effective immune surveillance) [21]. Besides, when com-
pared with ISP tumors, C1 was enriched with a larger proportion of
progenitor CD8+ T cells and lower fractions of terminally CD8+

Tex. Therefore, C1 is most likely to reinvigorate exhausted T cells
and has the most favorable prognosis after receiving ICBs (Fig. 5J).

DISCUSSION
Extensive studies have revealed that SNV and indel neoantigen
load strongly correlates with clinical response to ICB therapy.
Recent researches indicate that gene fusion is an important source

Fig. 4 Molecular mechanisms associated with the neoantigen signature. A Left panel, GSVA showing DDR pathways significantly enriched
in high NEO2IS group (adjusted p value <0.05); right panel, the estimated proportion of POLE and MMR-related gene mutations in two
subgroups according to median NEO2IS. B Proteomic analysis showing correlation between NEO2IS and the abundance of relevant proteins
involving cell cycle and DDR pathways. C Left panel, tumor ploidy significantly related to the neoantigen signature; right panel, GSEA
enrichment results (q-value <0.3) for immunomodulatory REACTOME pathways (top 10) that correlated with NEO2IS in external NSCLC
samples. D Comparison of expression levels of genes associated with T-effector and INFγ pathway, PDL1, pY705 STAT3 and STAT5 between
high and low NEO2IS groups. E Potential immune evasion mechanisms associated with higher NEO2IS, including higher levels of co-inhibitory
receptors, loss of heterozygosity of HLA gene locus (LOHHLA) and somatic mutations in HLA or B2M gene. F NEO2IS shows significant
association with clinical features (left panel); differentially expressed genes between metastatic and primary tumors (right panel).
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of tumor-specific antigens that can elicit a cytotoxic T-cell
response [10]. Therefore, future clinical trials of personalized
treatments and industrial manufacturing processes should now be
designed to allow analysis of patients’ T-cell responses to all
possible types of antigens and utilize them as immunotherapeutic
targets [22]. In this study, we comprehensively analyzed of WES
and RNA-seq data to provide a detailed landscape of SNV, indel
and fusion-derived neoantigens presented by MHC I molecules in
tumors. Our analysis showed that exhausted CD8+ T-cell markers
were associated with predicted neoantigen load scores after
adjusting clinicopathologic covariates. Furthermore, a NEO2IS was
developed to evaluate the immunogenic potency of candidate

neoantigens and predict clinical efficacy of 5 ICB cohorts. We
found that our defined NEO2IS improved discrimination of
responses to immunotherapy in lung cancer and melanoma
patients. We reckon that our work would aid clinicians in making
treatment decisions and conducting personalized therapies.
Intriguingly, TMB failed to show significant explanatory power
on survival or clinical benefit of Abbott patients [23]. This is in part
due to the ignorance of fusion neoantigens in calculation of TMB.
Moreover, fusion-derived NLS was significantly higher in respon-
ders than non-responders, while no significant association of SNV
or indel-derived NLS with clinical benefit was detected in the 51
melanomas. A previous study showed that fusion neoantigens had

Fig. 5 Neoantigen evolution and neoantigen-T cell interactions. A UMAP and tSNE of CD8+ T cells in lung cancers and melanomas, colored
and labeled by 4 main subsets of CD8+ lymphocytes. B More fractions of effector/memory cells and progenitor CD8+ Tex and less terminally
CD8+ Tex observed in TCGA tumors with higher NEOITHS (more than median cohort NEOITHS). C The NSCLC and melanoma ICB samples with
lower NEOITHS shows increased enrichment of terminally CD8+ Tex while higher NEOITHS correlates with activated TILs, effector/memory
CD8+ T cell and progenitor CD8+ Tex. D Expression levels of inhibitory checkpoints negatively correlates with NEOITHS in tumors. E Relapse-
free survival and overall survival for NSCLC and melanoma ICB cohorts based on high NEOITHS versus low NEOITHS (mean values of cohort
NEOITHS used as cut-off points). F Correlations between TCR repertoire diversity and proportions of CIBERSORTx-inferred CD8+ T cells subsets.
G Based on NEOITHS and NEO2IS, all included samples were segregated into four subgroups: C1-C4 that correspond to distinct TMEs.
H CIBERSORTx-estimated immune cell fractions within the defined immune subtypes. I Three immune subgroups were differentiated by
distinct clinical response to ICBs in NSCLCs and melanomas. J Kaplan–Meier plots for relapse-free (left panel) and overall survival (right panel)
from ICB cohorts stratified by three defined immune subtypes.
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the highest immunogenic potential in 32.2% of TCGA patients,
especially for patients with low SNV and indel burdens [24].
Although the overall neoantigen load of fusion genes was found
to be substantially lower than the total SNV-neoantigen burden
across different types of solid tumors [25] (i.e., lung cancer and
melanomas in this study, Fig S1, S3), some fusion neopeptides are
likely to induce a stronger immunogenic microenvironment and
antitumor immunity. In a study of an exceptional ICB responder
with head and neck cancer, circulating CD8+ T cells were proved
to recognize a peptide derived from a novel DEK-AFF2 gene
fusion. In this study, we observed neoantigens from a highly
recurrent fusion gene in lung cancer showing strong immuno-
genic potentials (Fig. S5b), suggesting that EML4-ALK derived
LAFSGIMIVY peptide may stimulate significant CD8+ TIL responses
and become an valuable immunotherapeutic target for vaccine or
engineered T cell therapies [26].
We further investigated the potential molecular mechanisms

accounting for our NEO2IS model that improved the accuracy of
predictions of patient responses to immunotherapy. Previous
studies have reported that gene deficiencies in two DDR pathways
of MMR and BER (POLE) led to a durable clinical benefit from
immunotherapies [16, 27]. Co-mutations in multiple DDR path-
ways were revealed to associate with higher genomic instability,
higher neoantigen burden and TMB; therefore, DDR genomic
signatures could serve as potential prognostic biomarkers for ICBs
[16]. Our analyses showed that TCGA tumors with activated DDR
pathways manifested an immune phenotypic profile of increased
NEO2IS. Consistent with aforementioned results involving DDR
pathways in those tumors, the higher their NEO2IS identified, the
higher their ploidy exhibited. This suggested that persistence of
clones inside tumors needs perturbing the DNA mismatch repair
machinery to induce genomic instability of tumor cells, leading to
an increased burden of neoantigens. This circumstance of
aneuploidy also reflected an absence of immunoediting and
acquisition of tumor escape mechanisms [11]. Chromosomal
instability can also be deemed as a later event after the tumor
cells have been loaded with neoantigens based on the
immunoediting theory [11]. The aberrant state (genomic instabil-
ity) of validation samples was also reflected by NEO2IS, suggesting
that the DNA mismatch repair-deficient tumors are more likely to
generate and accumulate neoantigens with immunogenic poten-
tials (recognized by the immune system) and have higher NEO2IS.
Additionally, tumors with high NEO2IS expressed high levels of
T-effector and IFNγ-associated genes as well as multiple immune-
checkpoint molecules, such as CD274, PDCD1, CTLA4, LAG3 and
TNFRSF8, suggesting the existence of ongoing immune activity
but functionally suppressed immune response in these tumors.
PDL1 expression is induced by IFNγ (secreted by activated NK and
T cells), and is abundant in carcinomas and TME [28]. In the clinic,
PDL1 levels in diagnostic biopsies are commonly employed to
predict ICI sensitivity in patients with various tumors [29] (i.e., Rizvi
LUAD patients, Fig. S5c). However, due to non-standardized
criteria and cut-offs for assessing positivity, PDL1 expression is
reported as an imperfect biomarker of ICB response by contra-
dictory results of multiple studies. A fraction of PDL1+ tumors fails
to respond to ICB and durable responses are observed in PDL1−

tumors [30, 31]. That’s caused by an important mechanism of
immune escape involving tumor cells’ defects in the IFNγ receptor
kinases JAK1 and JAK2 and the signal transducer and activator of
transcription (STAT) molecules [18, 19]. While PDL1 level seems to
be a relevant prognostic biomarker to rationalize the effective
pembrolizumab treatment, it may merely reflect tumor inflamma-
tion status and indicate an overall immune system status. Thus, it
should not be treated as a predictor of immunotherapy efficacy
mechanistically. Instead, a combination of PDL1 expression with
other indicators, such as abundant TIL infiltration and neoantigen
burden, may offer better predictiveness. Continuous interferon-
gamma exposure can lead to immunoediting of cancer cells,

resulting in immune escape [32]. Our analysis showed that NEO2IS
correlated significantly with PDL1 and STAT3 pY705 abundance
(Fig. S5d), indicating that tumor cells with more immunogenic
neoantigens required an immune-suppressive microenvironment
(i.e., high PDL1 expression, deregulation of molecules involved in
IFN-γ signaling pathway) to survive immune cell attacks. Another
feature of tumors linked to immune evasion is LOHHLA which was
found to associate with higher NEO2IS. NEO2IS can also reflect
clinical features (tumor size and metastasis), implying progressive
T cell dysfunction at advanced stage of tumors and terminal
differentiation of CD8+ Tex under constantly elevated antigenic
exposure in tumors. While the determinants of TME are complex
and multifactorial, our composite NEO2IS helps depict immunor-
eactivity, infiltration and exhaustion degree of CD8+ T lympho-
cytes in responses to peptides derived from all possible classes of
somatic mutations.
Adaptive immunity is operational only in tumor regions

displaying an evolving neoantigen landscape, pointing to clonal
evolution dictated by immune cells (immunoediting). Moreover,
most CD8+ CTLs display heterogeneous and limited reactivity
against neoantigens; therefore, it’s important to keep the
migratory capacity of specific immune subsets [33] and the
replenishment of tumor-infiltrating immune cells from the
circulation or adjacent normal tissues [34] for the interpretation
of immunological ITH along both the spatial and temporal
dimensions.
We investigated the impact of clonality on neoantigen

recognition in tumors with diverse clonal composition by using
our defined NEOITHS. To assess whether there was consistency
between neoantigen diversity and the heterogeneity within the
CD8+ TIL lineage, we analyzed a refined clustering of CD8+ T cells
and their clonotypic diversity. Surprisingly, we observed a higher
abundance of terminally exhausted-like TILs in both NSCLCs and
melanomas with lower NEOITHS, while enriched activated TILs,
effector/memory CD8+ T cell and progenitor CD8+ Tex in tumor
with more heterogeneous neoantigens. In a previous study, ccRCC
in metastatic disease was observed with an enrichment of
terminally exhausted CD8+ T cells and this subpopulation was
restricted in TCR diversity [20]. Indeed, in our study, the entropy
index used to estimate TCR diversity showed negative association
with terminally CD8+ Tex fractions while positively linked to
abundance of effector/memory TILs or progenitor CD8+ Tex. The
degree of clonal expansion in a T-cell population reflected by TCR
repertoire diversity was consistent with the neoantigen hetero-
geneity under evolutionary selections. Therefore, our NEOITHS
metric can be considered as an indicator of negative selection
pressures against the predicted neoantigens from the immune
surveillance. Higher NEOITHS means the presence of substantial
clonal expansion of effector/memory CD8+ T cells and progenitor
CD8+ Tex after priming, manifesting stronger selective pressures
and reflecting numerous pre-existing subclones that evaded
detection by the immune system. However, if low NEOITHS was
detected in tumors, a large subpopulation of CD8+ TILs maybe
reactive against neoantigens but terminally dysfunctional CD8+

Tex expressing high levels of PD-1 and accompanied by
heightened co-inhibitory receptor expression (including CTLA4,
HAVCR2, LAG3, CD160, and TIGIT).
Multiple studies have reported that high TCR repertoire diversity

associates with improved survival in multiple tumors, and
response to CTLA-4 inhibition in melanoma and hepatocellular
carcinoma [35–37]. However, other studies have observed that low
TCR repertoire diversity (high clonality) correlates with clinical
response to PD-1 axis inhibition in melanoma and urothelial
carcinoma [38, 39]. Shannon entropy was recommended to
estimate TCR repertoires derived from RNA-seq datasets; while
the use of evenness and “productive clonality” (1-evenness) is
strongly discouraged [40]. Intriguingly, in our study, both high
NEOITHS and TCR diversity associated with improved survival in
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external NSCLC ICB cohort. However, NEOITHS can predict OS of
melanoma patients, while only higher TCR clonality(1-nomalized
Shannon entropy) correlates with relapse-free survival of Abbott
melanoma patients (Fig. S5e). These results highlight the
complexity of TCR repertoire biology, along with the importance
of interpretating spatiotemporal immunological ITH by integrating
diversity of both neoantigens and T cell repertoires and by
keeping neoantigen-T cell interactions under careful consideration
[40]. We consequently introduced four categories of immune
subtypes by combining metrics of NEO2IS with NEOITHS, namely,
C1-C4, corresponding to different TMEs. In the infiltrated-inflamed
type (high NEO2IS), upon a sufficiently strong neoantigen signal,
the immune cells could be recruited and manifested strong
cytolytic activity (the ultimate effector mechanism in the cancer
immunity cycle, Fig. S5a). Given the heterogeneity and plasticity of
the tumor ecosystem, a subpopulation of these tumor cells
probably exploited immune-evasive TME signaling pathways to
enable escape from the immune system or treatments. Therefore,
this type was further divided into C1 (high NEOITHS, low ISP) and
C2 (low NEOITHS, high ISP) subsets. They were characterized by
two phenotypically and transcriptionally distinct subpopulations
of exhausted CD8+ T cells (progenitor and terminally CD8+ Tex,
respectively). Among ‘cold’ tumors with low NEO2IS confined to
the periphery of the TME, C3 (high NEOITHS) exhibited the highest
fractions of suppressive M2 macrophages and Tregs, thus was
defined as a infiltrated-excluded type with high ISP. C4 tumors
(low NEOITHS) are prone to have defects associated with
infiltration of APCs into the tumor tissue and thus categorized
as an immune-desert subtype with a dormancy state, in which
antigen presentation and priming of an adaptive immune
response were more likely inefficient. C4 showed minimal clinical
benefit from ICBs and the worst prognosis, given the tumor cell-
intrinsic mechanisms that lead to primary/adaptive resistance to
immunotherapy. A previous study proposed an immune dysfunc-
tion circuit constituted by inhibitory interactions between
terminally exhausted CD8+ T cells and M2-like macrophages. By
suppressing antitumor-immune activity, this immune circuit may
lead to a worse prognosis [20]. Due to stronger immunosuppres-
sive signals in the TME or tumor cell-extrinsic factors that reduced
possibilities of reinvigorating exhausted T cells, the high ISP group
(C2 and C3) with weakened immunity was less likely to respond to
anti-immunosuppressive strategies. In contrast, the ICB treatments
for C1 tumors were effective and predisposed to overcome tumor-
induced immune suppression. This is consistent with previous
findings that progenitor exhausted TILs can respond to anti-PD-1
therapy, but terminally exhausted TILs cannot; and melanoma
patients who have a higher percentage of progenitor exhausted
cells experience a longer duration of response to checkpoint-
blockade therapy [41]. This subclass presents a potential
geographical feature established to recruit and activate adaptive
immune cells, for instance, tertiary lymphoid structures (TLSs) that
act as key sites for the initiation of anticancer immunity and often
correlates with a positive prognosis [42]. As was revealed by the
evolutionary dynamics of negatively selected neoantigens in
growing tumors [21], the complexity of the evolving tumor-
immune interplays may contribute to the emergence of immu-
nological ITH and distinct sensitivity to ICB treatments.
Even though our work provides a comprehensive overview of

neoantigens originated from all possible somatic mutations in
NSCLC and melanomas, there are still a few limitations. First, we
focused solely on 8–11 kmer neopeptides displayed by MHC I
without considering 13-15 kmer peptides presented by MHC II,
which could also be potential neoantigens and elicit a cytotoxic T
cell response [43]. Second, neoantigen ITH information alone
does not completely recapitulate the full scale of molecular ITH
in these samples. Lastly, the immunogenicity of predicted
neoepitopes remains to be further validated in assays with the
autologous T cells.

As our results suggest, the NEO2IS has a superior predictive
power over TMB for clinical efficacy of ICB therapy. TCR repertoire
diversity is consistent with the neoantigen heterogeneity under
evolutionary selections. The NEOITHS reflects the heterogeneity
within CD8+ Tex lineage, delineates infiltration degree of CD8+

TIL with different differentiation states and manifests distinct
selective pressures in the TME. Our findings offer tremendous
insight into molecular determinants underlying cancer immu-
notherapy and provide an opportunity for the development of
neoantigen-based therapeutic vaccines and T-cell therapies
targeting multiple clonal neoantigens. Our defined immune
subtypes can be used for predicting immunotherapy response
and overall prognosis.

MATERIALS AND METHODS
Clinical efficacy evaluation
In five included immunotherapy cohorts, lung cancer patients were treated
with pembrolizumab (anti-PD-1) and melanoma patients were treated with
nivolumab, ipilimumab, tremelimumab or pembrolizumab (anti-CTLA4 or
anti-PD-1 therapy). ICB response was assessed by using Response
Evaluation Criteria in Solid Tumors (RECIST) version 1.1 after treatments.
To classify treatment response, a durable clinical benefit (DCB) was defined
using complete response (CR) or partial response (PR) or stable disease
(SD) for more than 6 months. No durable benefit (NDB) was defined as
progressive disease (PD) or a stable disease lasting 6 months or less. The
NSCLC and melanoma patients with known ICB response outcomes were
categorized as responders (CR or PR or DCB) and non-responders (SD or PD
or NDB).

HLA calling and neoantigen predictions
Patient-specific HLA calls were determined from normal WES data by
Polysolver [44], a standard HLA inference tool. Based on the translated
protein FASTA sequences output by NeoPredPipe (parameter: --preponly)
[45], all possible peptides (~11-amino acids in length) containing nonsynon-
ymous mutations (for SNVs and indels) were retained. Fused regions
encompassing the 13-amino acids in front and rear of the fusion breakpoint
were used to describe the impact of the fusion event on the coding regions.
Next, mutated peptides derived from 3 different types of somatic

alterations as well as corresponding patient-specific HLA calls were queried
for peptide-MHC complex (pMHC) binding affinity using NetMHCpan 4.1
(https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1) [46].
Strong binders with a %rank<0.5 were retained as the input of
deepHLApan(version 1.1) [47]. According to outputs of deepHLApan
model, a neoantigen score was calculated as the value of binding
score × immunogenic score for each neoantigen. Then, the candidate
neoantigens are screened out using the following criteria: (i) Predicted
neoantigens with an immunogenic score >0.5. (ii) Neoantigens with lower
five percent of neoantigen scores were excluded. (iii) SNV and indel
neoantigens with an expression of TPM= 0 were removed from
consideration. Finally, the number of all remaining neoantigens for sample
i were summed as ni, and a neoantigen load score (NLS) was calculated as
NLSi ¼ Pni

1 neoantigen score.

Single-cell RNA-seq data and T cell receptor (TCR) analysis
For scRNA-seq data analysis, quality control was first applied to filter out
low-quality cells or genes using the criteria of original publications. Next,
we performed the standard Seurat V4 procedure (including NormalizeData,
ScaleData and PCA) for GSE179994 and for GSE120575 without performing
“NormalizeData”. The top 3000 and 4000 highly variable genes were used
respectively for principal component analysis (PCA) of above two datasets.
We ran Harmony on the top 50 PCs for batch effects corrections, and then
UMAP or TSNE for dimensionality reduction using dimension parameter of
10 within the Seurat workflow. The batch-corrected PCs were used for
Louvain clustering of cells. To identify different CD8+ T cell subclusters, all
single-cells classified as CD8+ were further extracted in two datasets,
respectively. The clustering process for CD8+ T cells followed the exact
steps described above. Differentially expressed genes between two groups
of clusters were identified using a two-sided Wilcoxon rank rum test with
Benjamini-Hochberg (BH) correction. Based on a cell-type marker gene list
of GSE120575 (reference dataset), all single-cells of GSE179994 were then
annotated using preranked gene set enrichment analysis (GSEA) with the
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fgsea v1.20.0 R package [48]. Similarly, subclusters of CD8+ T cells in two
datasets were annotated based on a list of Human Cell Markers from
CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/) [49] and
transcriptional signatures for progenitor and terminally exhausted CD8+

T cells (Table S1) [50].
For TCR analysis, we applied the TRUST4 tool to reconstruct TCRs and

identify T cell clones from 3 bulk RNA-seq datasets given its good
performance, higher sensitivity and shorter runtimes [51].
Diversity of inferred TCR repertoires was then calculated as the metric of

Shannon Entropy with a natural logarithm. TCR diversity scores (Shannon
Entropy, Evenness, and Richness) of TCGA samples were assessed through
published results (mitcr_sampleStatistics_20160714.tsv, https://
gdc.cancer.gov/about-data/publications/pancanatlas).

Immune cell infiltration and tumor microenvironment analysis
Relative abundance of immune cells was estimated with gene expression
profiles of included tumors using R package “xCell” [52]. To estimate the
abundance of exhausted CD8+ T cells (Tex) and multiple interconnected
subpopulations, CIBERSORTx signature matrixes were generated as refer-
ence matrixes [53] by using immune cell types from NSCLC and melanoma
single-cell data, respectively. According to the resulting signature matrixes,
CIBERSORTx deconvolution was performed on the bulk RNA-seq datasets
(TCGA-LUNG, TCGA-SKCM, SMC, Amato and Abbott) with quantile normal-
ization disabled and with the number of permutations set to 1000.
To further extract and integrate tumor-microenvironmental features, by

using the prcomp R function, PCA was performed on (1) the estimated
fraction of myeloid cells, (2) the estimated fraction of infiltrating CD4+

lymphocytes, (3) the abundance of CIBERCORTx CD8+ Tex populations, (4)
the estimated fraction of infiltrating CD8+ lymphocytes and expression of
two marker genes [54], and (5) expression of HLA/B2M gene [55],
respectively. Principal component coordinates for each sample were
extracted using the factoextra R package (https://github.com/kassambara/
factoextra). Principal component 1 (PC1) of 5 PCA above was denoted as
(1) TAMs to represent the overall abundance of tumor associated
macrophages, (2) CD4-effector to represent the activation and helper role
of CD4+ T cells, (3) cytolytic activity to simulate the cytolytic state of CD8+

T cells, (4) CD8-Tex to represent the overall exhaustion status of CD8+ T cell
in tumors, and (5) meta-HLA to represent the overall HLA/B2M gene
expression, respectively (Table S2).

Linear regression modeling and Gene set enrichment analysis
Linear regression models were built using mRNA expression levels
[log2(TPM+ 1)] of TCGA NSCLC and SKCM samples as the response
variable, and sex, age, tumor purity and predicted neoantigen load as
predictors. Using the lm function in R software, the multivariate regression
model with the following formula was fit.

mRNA expression of gene Y � β1 ´ sex þ β2 ´ age þ β3 ´ tumor purity þ β4 ´ NLS

The correlation between 3 kinds of NLS and a set of immune genes was
calculated respectively by using clusterProfiler R package [56] and
performing Gene Set Enrichment Analysis (GSEA) on genes ranked by the t
values from linear regression models [57]. Reference gene sets for REACTOME
and KEGG pathways were derived from the Molecular Signature Database
(MsigDB) (http://software.Broadinstitute.org/gsea/msigdb/index.jsp).
As is shown in Fig. 2D, to assess the role of tumor neoantigens derived

from different mutational types to T-cell reaction (dominantly CD8+ T cell
exhaustion), by using fusion-, SNV- and indel-derived NLS (X1~X3), HLA or
B2M mutations(X4), expression level of CD80 (X5), abundance of
Neutrophils (TAN), Cancer-Associated Fibroblasts (CAFs) and Tregs
(X6~X8), TAMs and CD4-effector (X9~X10), sex, age and tumor purity
(X11~X13) as predictors, our defined CD8-Tex (the response variable) was
incorporated with 15 covariates into the following linear regression model:

CD8 - Tex � β0 þ β1 ´ fusion -NLS þ β2 ´ SNV -NLS þ β3 ´ indel -NLS þ β4

´ HLA=B2M mutation þ β5 ´ CD80 expression þ β6 ´ TAN þ β7 ´ CAFs

þ β8 ´ Tregs þ β9 ´ TAMs þ β10 ´ CD4 - effector þ β11 ´ sex þ β12

´ age þ β13 ´ tumor purity þ ε

Before training, TCGA data were randomly split into a training and a
testing portion (by 7 to 3). Using “caret” R package, ten-fold cross-

validation was applied to evaluate model robustness on the training
dataset internally. Likewise, SVR and gbm models were also trained using
these features on two TCGA datasets. After feature selection with stepwise
regression (both forward and backward selection), the final results of CD8-
Tex model (Table S3) were used to yield our composite neoantigen load
score (NEO2IS ~ β1 × fusion -NLS+ β2 × SNV-NLS) to reflect the different
states of neoantigen-based CD8+ T cell response (e.g., proliferation,
cytotoxicity and exhaustion).

Computation of neoantigen ITH score
Neoantigen ITH analysis was performed as follows. First, each predicted
neoantigen was annotated with a cancer cell fraction (CCF) value. For
neoantigens derived from SNVs or indels, CCF was calculated as follows
[58]:

CCF ¼ VAF
m ´ purity

ðpurity ´ CN þ 2ð1 � purityÞÞ

where variant allele fraction (VAF) is the fraction of mutated reads for a
given variant (estimated as the number of mutant reads spanning the
position divided by the number of total reads of the position). CN and
purity represent the copy number of the mutation’s genomic locus and the
fraction of tumor cells in the sequenced sample, respectively. Purity was
estimated using ABSOLUTE R package. Multiplicity of a mutation (m) is the
number of DNA copies bearing a mutation m, which can be estimated
from the VAF, purity and local copy number as m ¼
VAF=purity´ ðpurity´CNþ 2ð1� purityÞÞ [58]. In regions of clonal copy
number, the multiplicity of a mutation is a strictly positive integer, so the
most likely value can be obtained by rounding to the nearest non-zero
integer:
m ¼ maxð1; roundðVAF=purity ´ ðpurity ´CN þ 2ð1 � purityÞÞÞÞ, where
round is a function that returns the nearest integer [58]. CCF values above
1 (arising from sequencing noise or copy-neutral loss-of-heterozygosity
events) were assumed to be 1. For fusion neoantigens, we annotated
neoantigens derived from onco/driver fusion genes with CCF= 1 and
passenger genes with CCF= 0.5 since mutations in driver genes were
prone to be clonal and early events compared to mutations in nondriver
genes [59]. The list of oncogenes, tumor suppressor genes, protein kinase
genes, and driver genes was obtained from a previously published result
[25]. Then, each neoantigen from SNV or indel was considered as clonal
neo if the CCF exceeded 0.84 and 0.9 (medians of CCF values for all
melanomas and lung cancers) [60]. The neoantigen ITH score (NEOITHS),
for sample i with the number of subclonal neo (Ns) and the number of
clonal neo (Nc), was calculated as: NEOITHS; i ¼ Ns; i=ðNs; i þ Nc; iÞ. The
tumor clones that had zero neoantigen were assigned a NEOITHS of 1.

Statistical analysis
All statistical analyses were performed with R (v4.1.0). The number of NSMs
in the coding region (38Mb) for each tumor sample was used to compute
and estimate the tumor mutation burden (TMB). Differentially expressed
genes between two subgroups divided according to a given phenotype
were identified by the limma package using a threshold of p value <0.1.
Functional enrichment analysis was conducted using the clusterProfiler
package. The significantly enriched signatures with q-value <0.3 were
retained and then visualized by GOplot package. Gene set variation analysis
(GSVA) was utilized for identifying pathways most related to the neoantigen
model. GSVA was performed with a set of 186 KEGG pathway signatures by
using the “GSVA” package [61]. Pathway signatures with adjusted p value
<0.05 were considered significantly differentially enriched.
Heatmaps of predicted neoantigens were conducted and visualized by R

package ‘ComplexHeatmap’. Wilcoxon rank sum test, Chi-squared (χ2) test
and Fisher’s exact test were used for assessing associations of genomic,
clinical and molecular features (i.e., mRNA and protein expression) with
NEO2IS or defined immune subtypes, which were implemented and
visualized by ggplot2 and ggpubr packages. We conducted survival
analysis on all cohorts. Overall survival (OS) was defined as the date of
treatment initiation to the date of death or last follow-up. Relapse-free
survival (RFS) was defined as the time from treatment initiation to the
disease progression or end of the current follow-up. Kaplan–Meier curve
analyses and log-rank tests were performed by package ‘survminer’.
Receiver operating characteristic (ROC) curve analyses were conducted
using pROC package. For all statistical tests, two-tailed P < 0.05 denoted
statistical significance, indicated by *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001, and NS. denoted non-significance.
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Key Resources Table
Data resource Source Identifier

Deposited data

TCGA level 4 RNA-seq, clinical and survival information
(LUAD, LUSC and SKCM samples)

UCSC Xena database https://gdc.xenahubs.net

TCGA level 3 somatic mutation data (LUAD, LUSC and
SKCM samples)

Genomic Data Commons https://portal.gdc.cancer.gov/

TCGA RPPA data (LUAD, LUSC and SKCM samples) RPPA Core Facility, MD
Anderson Cancer Center

http://app1.bioinformatics.mdanderson.org/tcpa/_design/
basic/index.html

TCGA HLA allele information (LUAD, LUSC and SKCM
samples)

The Cancer Immunome Atlas https://tcia.at/home

TCGA fusion genes (LUAD, LUSC and SKCM samples) ChimerDB 4.0 database https://www.kobic.re.kr/chimerdb/

Raw WES data (Rizvi LUAD and Synder melanoma samples) Database of Genotypes and
Phenotypes

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000980.v1.p1

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001041.v1.p1

Raw RNA-seq and WES data (Amato melanoma samples) NCBI Sequence Read Archive
database

https://trace.ncbi.nlm.nih.gov/Traces/study/?
acc=SRP267584

https://trace.ncbi.nlm.nih.gov/Traces/study/?
acc=SRP217040

Raw and processed RNA-seq and WES data (Abbott
melanoma samples)

Database of Genotypes and
Phenotypes

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs002388.v1.p1

NCBI Gene Expression
Omnibus

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE15996

Raw and processed RNA-seq and WES data (SMC NSCLC
samples)

NCBI Sequence Read Archive
database

https://trace.ncbi.nlm.nih.gov/Traces/study/?
acc=SRP217040

NCBI Gene Expression
Omnibus

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE203360

European Genome-phenome
Archive

https://ega-archive.org/datasets/EGAD00001005211

Processed single-cell RNA-seq data (NSCLC and melanoma
samples)

NCBI Gene Expression
Omnibus

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE17794

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE120575

Software and algorithms

R v4.1.0 The Comprehensive R Archive
Network

https://www.r-project.org/

BWA v0.7.15 http://bio-bwa.sourceforge.net/

MuTect2 v4.1.0 https://github.com/broadinstitute/mutect

GATK v4.1.7.0 Van et al. [9] https://github.com/gatk-workflows/gatk4-somatic-snvs-
indels/

Polysolver Shukla et al. [44] https://github.com/jason-weirather/hla-polysolver

NetMHCpan v4.1 Reynisson et al. [46] https://services.healthtech.dtu.dk/service.php?
NetMHCpan-4.1

deepHLApan v1.1 Wu et al. [47] https://github.com/jiujiezz/deephlapan

STAR v2.7.9a https://github.com/alexdobin/STAR

STAR-Fusion v1.10.1 Haas et al. [62] https://github.com/STAR-Fusion/STAR-Fusion

Arriba v2.2.1 https://github.com/suhrig/arriba

GeneFuse v0.6.1 https://github.com/OpenGene/genefuse

CNVkit v0.9.7 https://github.com/etal/cnvkit

TRUST4 v1.0.6 Song et al. [51] https://github.com/liulab-dfci/TRUST4

Seurat v4.2.0 Hao et al. [63] https://satijalab.org/seurat/

CIBERSORTx Newman et al. [53] https://cibersortx.stanford.edu/runcibersortx.php

ABSOLUTE v1.0.6 https://software.broadinstitute.org/cancer/cga/absolute

xCell v1.1.0 Aran et al. [52] https://github.com/dviraran/xCell/

LOHHLA McGranahan et al. [12] https://bitbucket.org/mcgranahanlab/lohhla/src/master/

survminer v0.4.9 The CRAN package repository https://cran.r-project.org/package=survminer

survival v3.2.11 The CRAN package repository https://cran.r-project.org/package=survival

factoextra v1.0.7 The CRAN package repository https://cran.r-project.org/package=factoextra

clusterProfiler v4.1.4 Yu et al. [56] http://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html

fgsea v1.20.0 Sergushichev et al. [48] http://bioconductor.org/packages/release/bioc/html/
fgsea.html

GSVA v1.40.0 Hänzelmann et al. [61] https://bioconductor.org/packages/release/bioc/html/
GSVA.html
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