Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KIF14 promotes proliferation, lymphatic metastasis and chemoresistance through G3BP1/YBX1 mediated NF-κB pathway in cholangiocarcinoma

Abstract

Cholangiocarcinoma (CCA), a highly lethal and fetal cancer derived from the hepatobiliary system, is featured by aggressive growth and early lymphatic metastasis. Elucidating the underlying mechanism and identifying the effective therapy are critical for advanced CCA patients. In the study, we detected that KIF14 was upregulated in CCA samples, especially in patients with lymph node metastasis and vascular invasion. CCA patients with higher KIF14 were associated with worse overall survival and recurrence-free survival after surgery. Gain-of and loss-of function studies showed that KIF14 enhanced CCA cells proliferation, migration, invasion and lymphatic metastasis whereas its silencing abolished the effects in vivo and in vitro. Mechanistic investigation showed that KIF14 bound to the G3BP1/YBX1 complex and facilitated their interaction, causing increased activity of the NF-κB promoter and activation of NF-κB pathway. Furthermore, increased KIF14 level enhanced chemotherapy-resistance to gemcitabine-based regimen and induced immunosuppressive microenvironment. In addition, KIF14 was direct target of HNF4A and inversely regulated by HNF4A. Together, these findings suggested that KIF14 could be a potential oncogene and a good indicator in predicting prognosis and chemotherapy guidance for CCA patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KIF14 was upregulated in CCA and indicated worse survival.
Fig. 2: KIF14 facilitated CCA progression and lymphangiogenesis in vitro.
Fig. 3: KIF14 enhanced CCA growth and lymphatic metastasis in vivo.
Fig. 4: KIF14 bound to the complex of G3BP1/YBX1 and facilitated their interaction.
Fig. 5: KIF14-modulated G3BP1/YBX1 complex increased the transcriptional activity of NF-κB in CCA.
Fig. 6: KIF14 facilitated CCA development in NF-κB pathway dependent manner.
Fig. 7: KIF14 induced chemoresistance and immunosuppressive TME in CCA.

Similar content being viewed by others

Data availability

The supporting data of this study can be available by contacting the corresponding author with reasonable request.

References

  1. Dai Z, Liu H, Liao J, Huang C, Ren X, Zhu W, et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021;81:3339–3355.e3338.

    Article  CAS  PubMed  Google Scholar 

  2. Aoki S, Inoue K, Klein S, Halvorsen S, Chen J, Matsui A, et al. Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma. Gut. 2022;71:185–93.

    Article  CAS  PubMed  Google Scholar 

  3. Ruffolo LI, Jackson KM, Kuhlers PC, Dale BS, Figueroa Guilliani NM, Ullman NA, et al. GM-CSF drives myelopoiesis, recruitment and polarisation of tumour-associated macrophages in cholangiocarcinoma and systemic blockade facilitates antitumour immunity. Gut. 2022;71:1386–98.

    Article  CAS  PubMed  Google Scholar 

  4. Rodrigues PM, Olaizola P, Paiva NA, Olaizola I, Agirre-Lizaso A, Landa A, et al. Pathogenesis of Cholangiocarcinoma. Annu Rev Pathol. 2021;16:433–63.

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Wu X, Wu H, Gu Y, Shao Y, Shao Q, et al. Camrelizumab plus gemcitabine and oxaliplatin (GEMOX) in patients with advanced biliary tract cancer: a single-arm, open-label, phase II trial. J Immunother Cancer. 2020;8. https://doi.org/10.1136/jitc-2020-001240.

  6. Gao L, Zhang W, Zhang J, Liu J, Sun F, Liu H, et al. KIF15-mediated stabilization of AR and AR-V7 contributes to enzalutamide resistance in prostate cancer. Cancer Res. 2021;81:1026–39.

    Article  CAS  PubMed  Google Scholar 

  7. Lucanus AJ, Yip GW. Kinesin superfamily: roles in breast cancer, patient prognosis and therapeutics. Oncogene. 2018;37:833–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pejskova P, Reilly ML, Bino L, Bernatik O, Dolanska L, Ganji RS, et al. KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling. J Cell Biol. 2020;219. https://doi.org/10.1083/jcb.201904107.

  9. Benoit M, Asenjo AB, Paydar M, Dhakal S, Kwok BH, Sosa H. Structural basis of mechano-chemical coupling by the mitotic kinesin KIF14. Nat Commun. 2021;12:3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moawia A, Shaheen R, Rasool S, Waseem SS, Ewida N, Budde B, et al. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. Ann Neurol. 2017;82:562–77.

    Article  CAS  PubMed  Google Scholar 

  11. Wang ZZ, Yang J, Jiang BH, Di JB, Gao P, Peng L, et al. KIF14 promotes cell proliferation via activation of Akt and is directly targeted by miR-200c in colorectal cancer. Int J Oncol. 2018;53:1939–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Z, Li C, Yan C, Li J, Yan M, Liu B, et al. KIF14 promotes tumor progression and metastasis and is an independent predictor of poor prognosis in human gastric cancer. Biochim Biophys Acta Mol Basis Dis. 2019;1865:181–92.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng C, Wu X, Shen Y, Li Q. KIF14 and KIF23 promote cell proliferation and chemoresistance in HCC cells, and predict worse prognosis of patients with HCC. Cancer Manag Res. 2020;12:13241–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qiu HL, Deng SZ, Li C, Tian ZN, Song XQ, Yao GD, et al. High expression of KIF14 is associated with poor prognosis in patients with epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 2017;21:239–45.

    PubMed  Google Scholar 

  15. Wang W, Shi Y, Li J, Cui W, Yang B. Up-regulation of KIF14 is a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in cervical cancer. Biosci Rep. 2016;36. https://doi.org/10.1042/BSR20150314.

  16. Singel SM, Cornelius C, Zaganjor E, Batten K, Sarode VR, Buckley DL, et al. KIF14 promotes AKT phosphorylation and contributes to chemoresistance in triple-negative breast cancer. Neoplasia. 2014;16:247–56.e242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Q, Ren H, Li X, Qian B, Fan S, Hu F, et al. Silencing KIF14 reverses acquired resistance to sorafenib in hepatocellular carcinoma. Aging. 2020;12:22975–3003.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Omer A, Barrera MC, Moran JL, Lian XJ, Di Marco S, Beausejour C, et al. G3BP1 controls the senescence-associated secretome and its impact on cancer progression. Nat Commun. 2020;11:4979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meyer C, Garzia A, Morozov P, Molina H, Tuschl T. The G3BP1-family-USP10 deubiquitinase complex rescues ubiquitinated 40S subunits of ribosomes stalled in translation from lysosomal degradation. Mol Cell. 2020;77:1193–1205.e1195.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng H, Zhan Y, Zhang Y, Liu S, Lu J, Yang Y, et al. Elevated expression of G3BP1 associates with YB1 and p-AKT and predicts poor prognosis in nonsmall cell lung cancer patients after surgical resection. Cancer Med. 2019;8:6894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Su J, Wang Y, Fu D, Ideozu JE, Geng H, et al. The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-kappaB signaling axis. J Exp Clin Cancer Res. 2019;38:386.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou Y, Guan J, Gao F, Li Z, Lan Y, Lu H, et al. Orf virus ORF120 protein positively regulates the NF-kappaB pathway by interacting with G3BP1. J Virol. 2021;95:e0015321.

    Article  PubMed  Google Scholar 

  23. Hartley AV, Wang B, Mundade R, Jiang G, Sun M, Wei H, et al. PRMT5-mediated methylation of YBX1 regulates NF-kappaB activity in colorectal cancer. Sci Rep. 2020;10:15934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin M, Hua L, Wang B, Wei H, Prabhu L, Hartley AV, et al. Novel serine 176 phosphorylation of YBX1 activates NF-kappaB in colon cancer. J Biol Chem. 2017;292:3433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng S, Li L, Xu S, Wang X, Han T. Promotion of gastric tumor initiating cells in a 3D collagen gel culture model via YBX1/SPP1/NF-kappaB signaling. Cancer Cell Int. 2021;21:599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saha SK, Parachoniak CA, Ghanta KS, Fitamant J, Ross KN, Najem MS, et al. Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature. 2014;513:110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walesky C, Edwards G, Borude P, Gunewardena S, O’Neil M, Yoo B, et al. Hepatocyte nuclear factor 4 alpha deletion promotes diethylnitrosamine-induced hepatocellular carcinoma in rodents. Hepatology. 2013;57:2480–90.

    Article  CAS  PubMed  Google Scholar 

  28. Xu Q, Li Y, Gao X, Kang K, Williams JG, Tong L, et al. HNF4alpha regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat Commun. 2020;11:3978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brunton H, Caligiuri G, Cunningham R, Upstill-Goddard R, Bailey UM, Garner IM, et al. HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Rep. 2020;31:107625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Z, Li Y, Wu D, Yu S, Wang Y, Leung, et al. Nuclear receptor HNF4alpha performs a tumor suppressor function in prostate cancer via its induction of p21-driven cellular senescence. Oncogene. 2020;39:1572–89.

    Article  CAS  PubMed  Google Scholar 

  31. Shroff RT, Javle MM, Xiao L, Kaseb AO, Varadhachary GR, Wolff RA, et al. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial. JAMA Oncol. 2019;5:824–30.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kitano Y, Okabe H, Yamashita YI, Nakagawa S, Saito Y, Umezaki N, et al. Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma. Br J Cancer. 2018;118:171–80.

    Article  CAS  PubMed  Google Scholar 

  33. Watermann C, Pasternack H, Idel C, Ribbat-Idel J, Bragelmann J, Kuppler P, et al. Recurrent HNSCC harbor an immunosuppressive tumor immune microenvironment suggesting successful tumor immune evasion. Clin Cancer Res. 2021;27:632–44.

    Article  CAS  PubMed  Google Scholar 

  34. Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, et al. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer 2021;9. https://doi.org/10.1136/jitc-2020-002305.

  35. Tao Z, Ruan H, Sun L, Kuang D, Song Y, Wang Q, et al. Targeting the YB-1/PD-L1 Axis to Enhance Chemotherapy and Antitumor Immunity. Cancer Immunol Res. 2019;7:1135–47.

    Article  CAS  PubMed  Google Scholar 

  36. Ruan H, Bao L, Tao Z, Chen K, Flightless I. Homolog reverses enzalutamide resistance through PD-L1-mediated immune evasion in prostate cancer. Cancer Immunol Res. 2021;9:838–52.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed SM, Theriault BL, Uppalapati M, Chiu CW, Gallie BL, Sidhu SS, et al. KIF14 negatively regulates Rap1a-Radil signaling during breast cancer progression. J Cell Biol. 2012;199:951–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Sun R, Chi Z, Li S, Hao L. Silencing of Y-box binding protein-1 by RNA interference inhibits proliferation, invasion, and metastasis, and enhances sensitivity to cisplatin through NF-kappaB signaling pathway in human neuroblastoma SH-SY5Y cells. Mol Cell Biochem. 2017;433:1–12.

    Article  CAS  PubMed  Google Scholar 

  39. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    Article  CAS  PubMed  Google Scholar 

  40. Fan Y, Mao R, Yang J. NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 2013;4:176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bald T, Krummel MF, Smyth MJ, Barry KC. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol. 2020;21:835–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H et al. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 2021;9. https://doi.org/10.1136/jitc-2020-001946.

  44. Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 2016;150:1646–1658.e1617.

    Article  CAS  PubMed  Google Scholar 

  45. Jiao CY, Feng QC, Li CX, Wang D, Han S, Zhang YD, et al. BUB1B promotes extrahepatic cholangiocarcinoma progression via JNK/c-Jun pathways. Cell Death Dis. 2021;12:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank pathologists in the First Affiliated Hospital of Nanjing Medical University for evaluating HE and IHC slides and Jiangsu Provincial Key Research and Development Program (BE2016789) for supporting our study.

Funding

This work was supported by Jiangsu Provincial Key Research and Development Program (BE2016789).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: XL and CL; Acquisition of data: JW, YuW, AC, JS, YiW, and JC; Analysis and interpretation of data: WJ, JW, and XY; Drafting of the manuscript: WJ; Critical revision of the manuscript for important intellectual content: XL and CL; Obtained funding: XL and CL; Administrative, technical, or material support: XY and YY; Study supervision: XL and CL.

Corresponding authors

Correspondence to Changxian Li or Xiangcheng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Wang, J., Yang, X. et al. KIF14 promotes proliferation, lymphatic metastasis and chemoresistance through G3BP1/YBX1 mediated NF-κB pathway in cholangiocarcinoma. Oncogene 42, 1392–1404 (2023). https://doi.org/10.1038/s41388-023-02661-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02661-2

This article is cited by

Search

Quick links