Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

METTL3 stabilization by PIN1 promotes breast tumorigenesis via enhanced m6A-dependent translation

Abstract

Methyltransferase-like 3 (METTL3) is the catalytic subunit of the N6-adenosine methyltransferase complex responsible for N6-methyladenosine (m6A) modification of mRNA in mammalian cells. Although METTL3 expression is increased in several cancers, the regulatory mechanisms are unclear. We explored the regulatory roles of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) in METTL3 stability and m6A modification of mRNA. PIN1 interacted with METTL3 and prevented its ubiquitin-dependent proteasomal and lysosomal degradation. It stabilized METTL3, which increased the m6A modification of transcriptional coactivator with PDZ-binding motif (TAZ) and epidermal growth factor receptor (EGFR) mRNA, resulting in their efficient translation. PIN1 knockout altered the distribution of TAZ and EGFR mRNA from polysomes into monosomes. Inhibition of MEK1/2 kinases and PIN1 destabilized METTL3, which impeded breast cancer cell proliferation and induced cell cycle arrest at the G0/G1 phases. METTL3 knockout reduced PIN1 overexpression-induced colony formation in MCF7 cells and enhanced tumor growth in 4T1 cells in an orthotopic mouse model. In clinical settings, METTL3 expression significantly increased with tumor progression and was positively correlated with PIN1 expression in breast cancer tissues. Thus, PIN1 plays a regulatory role in mRNA translation, and the PIN1/METTL3 axis may be an alternative therapeutic target in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PIN1 expression is elevated and positively correlated with METTL3 abundance in human breast cancer.
Fig. 2: PIN1 interacted with METTL3 via its PPIase domain in a phosphorylation-dependent manner.
Fig. 3: PIN1 enhanced METTL3 stability by reducing its ubiquitination and lysosomal degradation.
Fig. 4: PIN1 promoted the m6A modification of TAZ and EGFR.
Fig. 5: PIN1 promoted the m6A-dependent translation of TAZ and EGFR via increased polysome assembly.
Fig. 6: Combinatorial treatment with MEKi and ATRA reduced the m6A-dependent translation of TAZ and EGFR.
Fig. 7: Mettl3 knockout suppressed PIN1-induced breast tumorigenesis in vivo.

Similar content being viewed by others

Data availability

The proteomic analysis results published here are wholly- or partly based upon the data generated through The Cancer Dependency Map (DepMap) Project at the Broad Institute (The Cancer Target Discovery and Development screening project) and TCGA. The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Chen Y, Wu Y-R, Yang H-Y, Li X-Z, Jie M-M, Hu C-J, et al. Prolyl isomerase Pin1: a promoter of cancer and a target for therapy. Cell Death Dis. 2018;9:883.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rustighi A, Zannini A, Campaner E, Ciani Y, Piazza S, Del Sal G. PIN1 in breast development and cancer: a clinical perspective. Cell Death Differ. 2017;24:200–11.

    Article  CAS  PubMed  Google Scholar 

  3. Lu KP, Finn G, Lee TH, Nicholson LK. Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol. 2007;3:619–29.

    Article  CAS  PubMed  Google Scholar 

  4. Thapar R. Roles of prolyl isomerases in RNA-mediated gene expression. Biomolecules. 2015;5:974–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keene JD. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc Natl Acad Sci. 2001;98:7018–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khanal P, Kim G, Lim SC, Yun HJ, Lee KY, Choi HK, et al. Prolyl isomerase Pin1 negatively regulates the stability of SUV39H1 to promote tumorigenesis in breast cancer. FASEB J. 2013;27:4606–18.

    Article  CAS  PubMed  Google Scholar 

  7. Farrell AS, Pelz C, Wang X, Daniel CJ, Wang Z, Su Y, et al. Pin1 regulates the dynamics of c-Myc DNA binding to facilitate target gene regulation and oncogenesis. Mol Cell Biol. 2013;33:2930–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fujiyama-Nakamura S, Yoshikawa H, Homma K, Hayano T, Tsujimura-Takahashi T, Izumikawa K, et al. Parvulin (Par14), a peptidyl-prolyl cis-trans isomerase, is a novel rRNA processing factor that evolved in the metazoan lineage. Mol Cell Proteom. 2009;8:1552–65.

    Article  CAS  Google Scholar 

  9. Shen ZJ, Malter JS. Regulation of AU-rich element RNA binding proteins by phosphorylation and the prolyl isomerase Pin1. Biomolecules. 2015;5:412–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nechama M, Uchida T, Mor Yosef-Levi I, Silver J, Naveh-Many T. The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism. J Clin Invest. 2009;119:3102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science. 1996;273:239–42.

    Article  CAS  PubMed  Google Scholar 

  12. Lee NY, Choi H-K, Shim J-H, Kang K-W, Dong Z, Choi HS. The prolyl isomerase Pin1 interacts with a ribosomal protein S6 kinase to enhance insulin-induced AP-1 activity and cellular transformation. Carcinogenesis. 2009;30:671–81.

    Article  CAS  PubMed  Google Scholar 

  13. Nechama M, Lin C-L, Richter JD. An unusual two-step control of CPEB destruction by Pin1. Mol Cell Biol. 2013;33:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu L, Wu D, Ning J, Liu W, Zhang D. Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer. 2019;19:326.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pan X, Hong X, Li S, Meng P, Xiao F. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med. 2021;53:91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang H, Xu B, Shi J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene. 2020;722:144076.

    Article  CAS  PubMed  Google Scholar 

  17. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20:608–24.

    Article  CAS  PubMed  Google Scholar 

  18. Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 2020;13:117.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147:759–72.

    Article  CAS  PubMed  Google Scholar 

  21. Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 2012;136:331–45.

    Article  CAS  PubMed  Google Scholar 

  22. Sun HL, Zhu AC, Gao Y, Terajima H, Fei Q, Liu S, et al. Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m(6)A Methylation. Mol Cell. 2020;80:633–647.e637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Erales J, Coffino P. Ubiquitin-independent proteasomal degradation. Biochim et Biophys Acta. 2014;1843:216–21.

    Article  CAS  Google Scholar 

  24. Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G. Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc. 2013;8:176–89.

    Article  CAS  PubMed  Google Scholar 

  25. Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, et al. mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis. Nature. 2018;561:556–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murakami S, Jaffrey SR. Hidden codes in mRNA: Control of gene expression by m6A. Mol Cell. 2022;82:2236–51.

    Article  CAS  PubMed  Google Scholar 

  27. Richards CH, Mohammed Z, Qayyum T, Horgan PG, McMillan DC. The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review. Fut Oncol. 2011;7:1223–35.

    Article  CAS  Google Scholar 

  28. Kumar S, Mohapatra T. Deciphering epitranscriptome: modification of mrna bases provides a new perspective for post-transcriptional regulation of gene expression. Front Cell Dev Biol. 2021;9:628415.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang S, Lv W, Li T, Zhang S, Wang H, Li X, et al. Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Int. 2022;22:48.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu S, Song Y, Zhou Y, Jiao Y, Li G. METTL3 accelerates breast cancer progression via regulating EZH2 m6A modification. J Healthc Eng. 2022;2022:5794422.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cheng L, Zhang X, Huang Y-Z, Zhu Y-L, Xu L-Y, Li Z, et al. Metformin exhibits antiproliferation activity in breast cancer via miR-483-3p/METTL3/m6A/p21 pathway. Oncogenesis. 2021;10:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishi H, Shaytan A, Panchenko AR. Physicochemical mechanisms of protein regulation by phosphorylation. Front Genet. 2014;5:270.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Innes B, Bailey M, Brandl C, Shilton B, Litchfield D. Non-catalytic participation of the Pin1 peptidyl-prolyl isomerase domain in target binding. Front Physiol. 2013;4:18.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guo L, Zheng J, Zhang J, Wang H, Shao G, Teng L. Knockdown of TAZ modifies triple-negative breast cancer cell sensitivity to EGFR inhibitors by regulating YAP expression. Oncol Rep. 2016;36:729–36.

    Article  CAS  PubMed  Google Scholar 

  37. Hashmi AA, Naz S, Hashmi SK, Irfan M, Hussain ZF, Khan EY, et al. Epidermal growth factor receptor (EGFR) overexpression in triple-negative breast cancer: association with clinicopathologic features and prognostic parameters. Surg Exp Pathol. 2019;2:6.

    Article  Google Scholar 

  38. Shen H, Yang N, Truskinovsky A, Chen Y, Mussell AL, Nowak NJ, et al. Targeting TAZ-driven human breast cancer by inhibiting a SKP2-p27 signaling axis. Mol Cancer Res. 2019;17:250–62.

    Article  CAS  PubMed  Google Scholar 

  39. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 5’ UTR m(6)A promotes cap-independent translation. Cell. 2015;163:999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin X, Chai G, Wu Y, Li J, Chen F, Liu J, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of snail. Nat Commun. 2019;10:2065.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lugowska I, Koseła-Paterczyk H, Kozak K, Rutkowski P. Trametinib: a MEK inhibitor for management of metastatic melanoma. Onco Targets Ther. 2015;8:2251–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei S, Kozono S, Kats L, Nechama M, Li W, Guarnerio J, et al. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat Med. 2015;21:457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Centritto F, Paroni G, Bolis M, Garattini SK, Kurosaki M, Barzago MM, et al. Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: luminal phenotype and RARα expression. EMBO Mol Med. 2015;7:950–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao Y, Ge CC, Wang J, Wu XX, Li XM, Li W, et al. MEK inhibitor, PD98059, promotes breast cancer cell migration by inducing β-catenin nuclear accumulation. Oncol Rep. 2017;38:3055–63.

    Article  CAS  PubMed  Google Scholar 

  45. Kim G, Bhattarai PY, Oh CH, Choi HS. All-trans retinoic acid overcomes acquired resistance to PLX4032 via Inhibition of PIN1 in melanoma cells. Anticancer Res. 2019;39:6537–46.

    Article  CAS  PubMed  Google Scholar 

  46. Lee LJ, Papadopoli D, Jewer M, del Rincon S, Topisirovic I, Lawrence MG, et al. Cancer plasticity: the role of mRNA translation. Trends Cancer. 2021;7:134–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP; NRF-2019R1A2C2002113, NRF-2022R1A2C2005094) and the Ministry of Science, Information and Communications Technology (ICT), and Future Planning (NRF-2022R1A5A2030454).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, PYB and HSC; methodology, PYB and GK; software, PYB and GK; validation and investigation, PYB, GK, RM and TO; resources, HSC; writing-original draft preparation, PYB; writing-review and editing, HSC; visualization, SCL; supervision, HSC; project administration, HSC; funding acquisition, HSC. All authors have read and agree to the published version of the manuscript.

Corresponding author

Correspondence to Hong Seok Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattarai, P.Y., Kim, G., Lim, SC. et al. METTL3 stabilization by PIN1 promotes breast tumorigenesis via enhanced m6A-dependent translation. Oncogene 42, 1010–1023 (2023). https://doi.org/10.1038/s41388-023-02617-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02617-6

This article is cited by

Search

Quick links