Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogenic RAS promotes leukemic transformation of CUX1-deficient cells

Abstract

-7/del(7q) is prevalent across subtypes of myeloid neoplasms. CUX1, located on 7q22, encodes a homeodomain-containing transcription factor, and, like -7/del(7q), CUX1 inactivating mutations independently carry a poor prognosis. As with loss of 7q, CUX1 mutations often occur early in disease pathogenesis. We reported that CUX1 deficiency causes myelodysplastic syndrome in mice but was insufficient to drive acute myeloid leukemia (AML). Given the known association between -7/del(7q) and RAS pathway mutations, we mined cancer genome databases and explicitly linked CUX1 mutations with oncogenic RAS mutations. To determine if activated RAS and CUX1 deficiency promote leukemogenesis, we generated mice bearing NrasG12D and CUX1-knockdown which developed AML, not seen in mice with either mutation alone. Oncogenic RAS imparts increased self-renewal on CUX1-deficient hematopoietic stem/progenitor cells (HSPCs). Reciprocally, CUX1 knockdown amplifies RAS signaling through reduction of negative regulators of RAS/PI3K signaling. Double mutant HSPCs were responsive to PIK3 or MEK inhibition. Similarly, low expression of CUX1 in primary AML samples correlates with sensitivity to the same inhibitors, suggesting a potential therapy for malignancies with CUX1 inactivation. This work demonstrates an unexpected convergence of an oncogene and tumor suppressor gene on the same pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CUX1 and RAS driver mutations co-occur across tumor types and cooperate in myeloid leukemogenesis.
Fig. 2: Oncogenic RAS confers increased progenitor numbers and self-renewal properties on Cux1low HSPCs.
Fig. 3: CUX1 deficiency enhances RAS signaling.
Fig. 4: The combination of CUX1 deficiency and NrasG12D promotes HSPC cell cycling.
Fig. 5: CUX1 knockdown and NrasG12D have a convergent transcriptional program and down-regulate negative regulators of RAS/PI3K signaling.
Fig. 6: Overexpression of PIK3IP1 or SAMD9L reduces Cux1low;NrasG12D colony overgrowth.
Fig. 7: Low levels of CUX1 confer sensitivity to MEK and PIK3 inhibition in mouse HSPCs and human AMLs.
Fig. 8: Model for how CUX1 deficiency cooperates with activated RAS to promote leukemogenesis.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in the GEO repository, accession GSE161614.

References

  1. Jotte MRM, McNerney ME. The significance of CUX1 and chromosome 7 in myeloid malignancies. Curr Opin Hematol. 2022;29:92–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44:642–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loh PR, Genovese G, Handsaker RE, Finucane HK, Reshef YA, Palamara PF, et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature. 2018;559:350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dimitriou M, Woll PS, Mortera-Blanco T, Karimi M, Wedge DC, Doolittle H, et al. Perturbed hematopoietic stem and progenitor cell hierarchy in myelodysplastic syndromes patients with monosomy 7 as the sole cytogenetic abnormality. Oncotarget. 2016;7:72685–98.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Takahashi K, Wang F, Kantarjian H, Song X, Patel K, Neelapu S, et al. Copy number alterations detected as clonal hematopoiesis of indeterminate potential. Blood Adv. 2017;1:1031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McNerney ME, Brown CD, Wang X, Bartom ET, Karmakar S, Bandlamudi C, et al. CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood. 2013;121:975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong CC, Martincorena I, Rust AG, Rashid M, Alifrangis C, Alexandrov LB, et al. Inactivating CUX1 mutations promote tumorigenesis. Nat Genet. 2014;46:33–8.

    Article  CAS  PubMed  Google Scholar 

  10. Gibson CJ, Lindsley RC, Tchekmedyian V, Mar BG, Shi J, Jaiswal S, et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J Clin Oncol. 2017;35:1598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130:742–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ludlow C, Choy R, Blochlinger K. Functional analysis of Drosophila and mammalian cut proteins in files. Dev Biol. 1996;178:149–59.

    Article  CAS  PubMed  Google Scholar 

  14. Sinclair AM, Lee JA, Goldstein A, Xing D, Liu S, Ju R, et al. Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. Blood. 2001;98:3658–67.

    Article  CAS  PubMed  Google Scholar 

  15. Sansregret L, Nepveu A. The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene. 2008;412:84–94.

    Article  CAS  PubMed  Google Scholar 

  16. Alcalay NI, Sharma M, Vassmer D, Chapman B, Paul B, Zhou J, et al. Acceleration of polycystic kidney disease progression in cpk mice carrying a deletion in the homeodomain protein Cux1. Am J Physiol Ren Physiol. 2008;295:F1725–34.

    Article  CAS  Google Scholar 

  17. Cubelos B, Sebastian-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, et al. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron. 2010;66:523–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lizarraga G, Lichtler A, Upholt WB, Kosher RA. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb. Dev Biol. 2002;243:44–54.

    Article  CAS  PubMed  Google Scholar 

  19. An N, Khan S, Imgruet M, Gurbuxani SK, Konecki SN, Burgess M, et al. Gene dosage effect of CUX1 in a murine model disrupts HSC homeostasis and controls the severity and mortality of MDS. Blood. 2018;131:2682–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arthur RK, An N, Khan S, McNerney ME. The haploinsufficient tumor suppressor, CUX1, acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters. Nucleic Acids Res. 2017;45:6350–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramdzan ZM, Nepveu A. CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers. Nat Rev Cancer. 2014;14:673–82.

    Article  CAS  PubMed  Google Scholar 

  22. Imgruet MK, Lutze J, An N, Hu B, Khan S, Kurkewich J, et al. Loss of a 7q gene, CUX1, disrupts epigenetic-driven DNA repair and causes therapy-related myeloid neoplasms. Blood. 2021;138:790–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luna-Fineman S, Shannon KM, Lange BJ. Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood. 1995;85:1985–99.

    Article  CAS  PubMed  Google Scholar 

  24. Side LE, Curtiss NP, Teel K, Kratz C, Wang PW, Larson RA, et al. RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer. 2004;39:217–23.

    Article  CAS  PubMed  Google Scholar 

  25. Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47:1326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luna-Fineman S, Shannon KM, Atwater SK, Davis J, Masterson M, Ortega J, et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood. 1999;93:459–66.

    Article  CAS  PubMed  Google Scholar 

  27. McNerney ME, Brown CD, Peterson AL, Banerjee M, Larson RA, Anastasi J, et al. The spectrum of somatic mutations in high-risk acute myeloid leukaemia with -7/del(7q). Br J Haematol. 2014;166:550–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genom Hum Genet. 2002;3:179–98.

    Article  CAS  Google Scholar 

  29. Chang TY, Dvorak CC, Loh ML. Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia. Blood. 2014;124:2487–97.

    Article  CAS  PubMed  Google Scholar 

  30. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006;107:3847–53.

    Article  CAS  PubMed  Google Scholar 

  31. Li Q, Haigis KM, McDaniel A, Harding-Theobald E, Kogan SC, Akagi K, et al. Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood. 2011;117:2022–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 2008;40:600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aly M, Ramdzan ZM, Nagata Y, Balasubramanian SK, Hosono N, Makishima H, et al. Distinct clinical and biological implications of CUX1 in myeloid neoplasms. Blood Adv. 2019;3:2164–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD, et al. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood. 2002;100:238–45.

    Article  CAS  PubMed  Google Scholar 

  35. Li Q, Bohin N, Wen T, Ng V, Magee J, Chen SC, et al. Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness. Nature. 2013;504:143–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang J, Kong G, Liu Y, Du J, Chang YI, Tey SR, et al. Nras(G12D/+) promotes leukemogenesis by aberrantly regulating hematopoietic stem cell functions. Blood. 2013;121:5203–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dovey OM, Cooper JL, Mupo A, Grove CS, Lynn C, Conte N, et al. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood. 2017;130:1911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Geissler K, Hinterberger W, Bettelheim P, Haas O, Lechner K. Colony growth characteristics in chronic myelomonocytic leukemia. Leuk Res. 1988;12:373–7.

    Article  CAS  PubMed  Google Scholar 

  39. Emanuel PD, Bates LJ, Castleberry RP, Gualtieri RJ, Zuckerman KS. Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood. 1991;77:925–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative epigenetic remodeling by TET2 loss and NRAS mutation drives myeloid transformation and MEK inhibitor sensitivity. Cancer Cell. 2018;33:44–59.e48.

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Liu Y, Li Z, Wang Z, Tan LX, Ryu MJ, et al. Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. Blood. 2011;118:368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin X, Qin T, Zhao M, Bailey N, Liu L, Yang K, et al. Oncogenic N-Ras and Tet2 haploinsufficiency collaborate to dysregulate hematopoietic stem and progenitor cells. Blood Adv. 2018;2:1259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wong JC, Bryant V, Lamprecht T, Ma J, Walsh M, Schwartz J, et al. Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. JCI Insight. 2018;3:e121086.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, et al. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 2013;24:305–17.

    Article  CAS  PubMed  Google Scholar 

  46. Akutagawa J, Huang TQ, Epstein I, Chang T, Quirindongo-Crespo M, Cottonham CL, et al. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia. 2016;30:1335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burgess MR, Hwang E, Firestone AJ, Huang T, Xu J, Zuber J, et al. Preclinical efficacy of MEK inhibition in Nras-mutant AML. Blood. 2014;124:3947–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shannon KM, Watterson J, Johnson P, O’Connell P, Lange B, Shah N, et al. Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. Blood. 1992;79:1311–8.

    Article  CAS  PubMed  Google Scholar 

  50. Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 2020;21:607–32.

    Article  CAS  PubMed  Google Scholar 

  51. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.

    Article  CAS  PubMed  Google Scholar 

  52. van de Haar J, Canisius S, Yu MK, Voest EE, Wessels LFA, Ideker T. Identifying epistasis in cancer genomes: a delicate affair. Cell. 2019;177:1375–83.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang T, Li C, Xia C, Dong Y, Yang D, Geng Y, et al. Oncogenic NRAS hyper-activates multiple pathways in human cord blood stem/progenitor cells and promotes myelomonocytic proliferation in vivo. Am J Transl Res. 2015;7:1963–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu J, Haigis KM, Firestone AJ, McNerney ME, Li Q, Davis E, et al. Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation. Cancer Discov. 2013;3:993–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burgess MR, Hwang E, Mroue R, Bielski CM, Wandler AM, Huang BJ, et al. KRAS allelic imbalance enhances fitness and modulates MAP kinase dependence in cancer. Cell. 2017;168:817–29.e815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saito Y, Koya J, Araki M, Kogure Y, Shingaki S, Tabata M, et al. Landscape and function of multiple mutations within individual oncogenes. Nature. 2020;582:95–9.

    Article  CAS  PubMed  Google Scholar 

  57. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014;111:2548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takahashi K, Jabbour E, Wang X, Luthra R, Bueso-Ramos C, Patel K, et al. Dynamic acquisition of FLT3 or RAS alterations drive a subset of patients with lower risk MDS to secondary AML. Leukemia. 2013;27:2081–3.

    Article  CAS  PubMed  Google Scholar 

  59. Niemeyer CM. JMML genomics and decisions. Hematol Am Soc Hematol Educ Program. 2018;2018:307–12.

    Article  Google Scholar 

  60. Liu YL, Yan Y, Webster C, Shao L, Lensing SY, Ni H, et al. Timing of the loss of Pten protein determines disease severity in a mouse model of myeloid malignancy. Blood. 2016;127:1912–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2004;2:e301.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thomas ME, 3rd, Abdelhamed S, Hiltenbrand R, Schwartz JR, Sakurada SM, Walsh M, et al. Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells. Leukemia. 2021;35:3232–44.

  63. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the services and assistance provided by the following University of Chicago core facilities supported by the Cancer Center Support Grant (P30 CA014599): Integrated Light Microscopy Core, Cytometry and Antibody Technology Core (RRID: SCR_017760), Human Tissue Resource Center (RRID: SCR_019199), and the Genomics Facility (RRID: SCR_019196). We also thank The University of Chicago’s Center for Research Informatics Bioinformatics Core and Animal Resources Center. We thank Dr. Jeffrey Klco (St. Jude Children’s Research Hospital) for providing the lentiviral plasmids. We also gratefully acknowledge Dr. Angela Stoddart for critical reading of the manuscript. The authors would like to acknowledge the American Association for Cancer Research and its financial and material support in the development of the AACR Project GENIE registry, as well as members of the consortium for their commitment to data sharing. Interpretations are the responsibility of the study authors.

This work was supported in part by the American Cancer Society Research Scholar Grant 132457-RSG-18-171-01-LIB, American Society of Hematology Junior Faculty Scholar Award, the National Institutes of Health (R01 HL142782 and R01 CA231880), the Brinson Foundation, and The University of Chicago Cancer Research Foundation Women’s Board. MKI is supported by NIH F30 CA232673 and The University of Chicago Medical Scientist Training Program (T32 GM007281). The authors gratefully acknowledge the support of Robin and Matthew Patinkin.

Author information

Authors and Affiliations

Authors

Contributions

NA and MEM conceived the experiments and wrote the manuscript. NA performed the mouse experiments and in vitro assays and analyzed data. SK assisted with mouse experiments and in vitro assays. NA and MKI performed RNA sequencing. MEM and MKI analyzed the RNA-seq data. MEM and LJ analyzed TCGA and GENIE data. SG performed hematopathologic analyses and edited the manuscript.

Corresponding author

Correspondence to Megan E. McNerney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, N., Khan, S., Imgruet, M.K. et al. Oncogenic RAS promotes leukemic transformation of CUX1-deficient cells. Oncogene 42, 881–893 (2023). https://doi.org/10.1038/s41388-023-02612-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02612-x

This article is cited by

Search

Quick links