Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deubiquitylation of Rab35 by USP32 promotes the transmission of imatinib resistance by enhancing exosome secretion in gastrointestinal stromal tumours

Abstract

Imatinib is a tyrosine kinase inhibitor that is widely used to combat gastrointestinal stromal tumours (GISTs). However, secondary resistance to imatinib is an important challenge in GIST treatment. Recent studies have demonstrated that cancer-derived nanosized exosomes play a key role in intercellular communication, but little is known about the roles of exosomes in imatinib-resistant GISTs. Here, we reveal that exosomes released from imatinib-resistant GISTs transmit drug resistance to imatinib-sensitive tumours. By using iTRAQ technology, we demonstrate that Ras-related protein Rab-35 (Rab35) is upregulated differentially in imatinib-resistant GISTs. Loss of Rab35 decreases exosome secretion, thereby hampering the transmission of imatinib resistance to sensitive tumours. Mechanistically, we showed that the ubiquitin‒proteasome system is involved in elevated Rab35 expression and that ubiquitin-specific protease 32 (USP32), a deubiquitylating enzyme, is bound to Rab35. Further experiments demonstrate that this protease protects Rab35 from proteasomal degradation by reducing Lys48 (K48)-ubiquitination. Additionally, we found that the transcription factor ETV1, which is a lineage survival factor in GISTs, promotes USP32 expression. Collectively, our results reveal that exosomes transmit imatinib resistance in GISTs and that deubiquitylation plays a key role in regulating the transmission process. The USP32-Rab35 axis provides a potential target for interventions to reduce the occurrence of imatinib resistance in GISTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exosomes transmit imatinib resistance in GIST cells.
Fig. 2: Rab35 is differentially upregulated in imatinib-resistant GISTs and affects the transmission of resistance by regulating exosome secretion in GIST.
Fig. 3: Ubiquitination modification affects Rab35 protein levels.
Fig. 4: USP32 stabilizes Rab35 at the protein level.
Fig. 5: USP32 deubiquitinates Rab35.
Fig. 6: USP32 regulates exosome secretion in GIST cells.
Fig. 7: Targeting USP32 decreases the transmission of imatinib resistance in vivo.
Fig. 8: ETV1 upregulates USP32 transcription.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

References

  1. Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol. 2022;19:328–41.

    Article  PubMed  Google Scholar 

  2. Serrano C, George S. Gastrointestinal stromal tumor: challenges and opportunities for a new decade. Clin Cancer Res. 2020;26:5078–85.

    Article  CAS  PubMed  Google Scholar 

  3. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11:865–78.

    Article  CAS  PubMed  Google Scholar 

  4. Eisenberg BL, Trent JC. Adjuvant and neoadjuvant imatinib therapy: current role in the management of gastrointestinal stromal tumors. Int J Cancer. 2011;129:2533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Farag S, van Coevorden F, Sneekes E, Grunhagen DJ, Reyners AKL, Boonstra PA, et al. Elderly patients with gastrointestinal stromal tumour (GIST) receive less treatment irrespective of performance score or comorbidity - A retrospective multicentre study in a large cohort of GIST patients. Eur J Cancer. 2017;86:318–25.

    Article  PubMed  Google Scholar 

  6. Soreide K, Sandvik OM, Soreide JA, Giljaca V, Jureckova A, Bulusu VR. Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies. Cancer Epidemiol. 2016;40:39–46.

    Article  PubMed  Google Scholar 

  7. Mahadevan D, Cooke L, Riley C, Swart R, Simons B, Della Croce K, et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 2007;26:3909–19.

    Article  CAS  PubMed  Google Scholar 

  8. Debiec-Rychter M, Cools J, Dumez H, Sciot R, Stul M, Mentens N, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 2005;128:270–9.

    Article  CAS  PubMed  Google Scholar 

  9. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.

    Article  CAS  PubMed  Google Scholar 

  10. Yue B, Yang H, Wang J, Ru W, Wu J, Huang Y, et al. Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif. 2020;53:e12857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci. 2017;42:42–56.

    Article  CAS  PubMed  Google Scholar 

  12. Klinkert K, Echard A. Rab35 GTPase: a central regulator of phosphoinositides and F-actin in endocytic recycling and beyond. Traffic 2016;17:1063–77.

    Article  CAS  PubMed  Google Scholar 

  13. Wang FW, Cao CH, Han K, Zhao YX, Cai MY, Xiang ZC, et al. APC-activated long noncoding RNA inhibits colorectal carcinoma pathogenesis through reduction of exosome production. J Clin Invest. 2019;129:727–43.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yousefi H, Maheronnaghsh M, Molaei F, Mashouri L, Reza Aref A, Momeny M, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene. 2020;39:953–74.

    Article  CAS  PubMed  Google Scholar 

  15. Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol. 2022;23:350–67.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, et al. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ. 2019;26:2300–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 2010;189:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

    Article  CAS  PubMed  Google Scholar 

  19. Yang L, Peng XQ, Li Y, Zhang XD, Ma YB, Wu CL, et al. Long non-coding RNA HOTAIR promotes exosome secretion by regulating RAB35 and SNAP23 in hepatocellular carcinoma. Mol Cancer. 2019;18:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Villarroel-Campos D, Henriquez DR, Bodaleo FJ, Oguchi ME, Bronfman FC, Fukuda M, et al. Rab35 functions in axon elongation are regulated by P53-related protein kinase in a mechanism that involves Rab35 protein degradation and the microtubule-associated protein 1B. J Neurosci. 2016;36:7298–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sapmaz A, Berlin I, Bos E, Wijdeven RH, Janssen H, Konietzny R, et al. USP32 regulates late endosomal transport and recycling through deubiquitylation of Rab7. Nat Commun. 2019;10:1454.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kulathu Y, Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol. 2012;13:508–23.

    Article  CAS  PubMed  Google Scholar 

  23. Wang C, Tan X, Tang D, Gou Y, Han C, Ning W, et al. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites. Brief Bioinform. 2022;23:bbab574.

    Article  PubMed  Google Scholar 

  24. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.

    Article  CAS  PubMed  Google Scholar 

  25. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  CAS  PubMed  Google Scholar 

  26. Lee DM, Duensing A. What’s the FOX Got to Do with the KITten? regulating the lineage-specific transcriptional landscape in GIST. Cancer Disco. 2018;8:146–9.

    Article  CAS  Google Scholar 

  27. Xu K, Zhang Q, Chen M, Li B, Wang N, Li C, et al. N(6)-methyladenosine modification regulates imatinib resistance of gastrointestinal stromal tumor by enhancing the expression of multidrug transporter MRP1. Cancer Lett. 2022;530:85–99.

    Article  CAS  PubMed  Google Scholar 

  28. Chi P, Chen Y, Zhang L, Guo XY, Wongvipat J, Shamu T, et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature. 2010;467:849–U117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ran LL, Sirota I, Cao Z, Murphy D, Chen YD, Shukla S, et al. Combined inhibition of MAP kinase and KIT signaling synergistically destabilizes ETV1 and suppresses GIST tumor growth. Cancer Discov. 2015;5:304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, Benjamin RS, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26:626–32.

    Article  CAS  PubMed  Google Scholar 

  31. Poveda A, del Muro XG, Lopez-Guerrero JA, Cubedo R, Martinez V, Romero I, et al. GEIS guidelines for gastrointestinal sarcomas (GIST). Cancer Treat Rev. 2017;55:107–19.

    Article  PubMed  Google Scholar 

  32. Wardelmann E, Merkelbach-Bruse S, Pauls K, Thomas N, Schildhaus HU, Heinicke T, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res. 2006;12:1743–9.

    Article  CAS  PubMed  Google Scholar 

  33. Liegl B, Kepten I, Le C, Zhu M, Demetri GD, Heinrich MC, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216:64–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antonescu CR, Guo T, Arkun K, DeMatteo RP, Besmer P. Acquired resistance to imatinib in gastrointestinal stromal tumor (GIST) occurs through secondary gene mutation. Lab Invest. 2005;85:11a-a.

    Google Scholar 

  35. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:75.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang DL, Zhao CS, Xu F, Zhang AM, Jin MM, Zhang KC, et al. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics 2021;11:2860–75.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li LX, He D, Guo QQ, Zhang ZY, Ru D, Wang LT, et al. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J Nanobiotechnol. 2022;20:50.

    Article  CAS  Google Scholar 

  38. Atay S, Banskota S, Crow J, Sethi G, Rink L, Godwin AK. Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion. Proc Natl Acad Sci USA. 2014;111:711–6.

    Article  CAS  PubMed  Google Scholar 

  39. Atay S, Wilkey DW, Milhem M, Merchant M, Godwin AK. Insights into the proteome of gastrointestinal stromal tumors-derived exosomes reveals new potential diagnostic biomarkers. Mol Cell Proteom. 2018;17:495–515.

    Article  CAS  Google Scholar 

  40. Kouranti I, Sachse M, Arouche N, Goud B, Echard A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol. 2006;16:1719–25.

  41. Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. 2017;86:159–92.

    Article  CAS  PubMed  Google Scholar 

  42. Sun TS, Liu ZN, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 2020;19:146.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Song L, Tang S, Han XL, Jiang ZY, Dong LL, Liu CC, et al. KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a. Nat Commun. 2019;10:1639.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sakai R, Fukuda R, Unida S, Aki M, Ono Y, Endo A, et al. The integral function of the endocytic recycling compartment is regulated by RFFL-mediated ubiquitylation of Rab11 effectors. J Cell Sci. 2019;132:jcs228007.

    Article  CAS  PubMed  Google Scholar 

  45. Sastre AA, Montoro ML, Lacerda HM, Llavero F, Zugaza JL. Small GTPases of the Rab and Arf families: key regulators of intracellular trafficking in neurodegeneration. Int J Mol Sci. 2021;22:4425.

    Article  CAS  Google Scholar 

  46. Kumar R, Tang QL, Muller SA, Gao P, Mahlstedt D, Zampagni S, et al. Fibroblast growth factor 2-mediated regulation of neuronal exosome release depends on VAMP3/cellubrevin in hippocampal neurons. Adv Sci. 2020;7:1902372.

    Article  CAS  Google Scholar 

  47. Xu K, He Z, Chen M, Wang N, Zhang D, Yang L, et al. HIF-1alpha regulates cellular metabolism, and Imatinib resistance by targeting phosphogluconate dehydrogenase in gastrointestinal stromal tumors. Cell Death Dis. 2020;11:586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferdoushi A, Li X, Jamaluddin MFB, Hondermarck H. Proteomic profile of human Schwann cells. Proteomics 2020;20:e1900294.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (grant number: 82072708); Youth Program of National Natural Science Foundation of China (grant number: 81902461); Natural Science Foundation of Province (grant number: BK20191495, BK20191073); The Priority Academic Program Development of Jiangsu Higher Education Institutions (grant number: PAPD, JX10231801); Jiangsu Key Medical Discipline (General Surgery) (grant number: ZDXKA2016005).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: CL and ZSG; data acquisition, analysis, and interpretation: ZSG, ZWC, and ZHL; investigation: YBB, HYS, NFW, ZYH, ZL, BWL and CL; acquisition of patient specimens: FYL, DCZ, and LY; article drafting and revising: CL and HX; article writing: CL; support of experimental and clinical techniques: LJW and ZKX. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Zekuan Xu or Hao Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The collection of specimens and animal handling for the study have been reviewed and approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Gao, Z., Cui, Z. et al. Deubiquitylation of Rab35 by USP32 promotes the transmission of imatinib resistance by enhancing exosome secretion in gastrointestinal stromal tumours. Oncogene 42, 894–910 (2023). https://doi.org/10.1038/s41388-023-02600-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02600-1

This article is cited by

Search

Quick links