Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CXCR7 as a novel therapeutic target for advanced prostate cancer

Abstract

Chemokines and their cognate receptors comprise an intricate signaling network that becomes high-jacked by cancer cells for uncontrollable tumor growth and dissemination. ACKR3 (Atypical Chemokine Receptor 3), traditionally called CXCR7, is up-regulated in many cancers, including advanced prostate cancer, and represents promising targets for therapeutic intervention. Unlike typical G protein-coupled receptors such as CXCR4, CXCR7, once bound by its cognate ligand CXCL12, initiates the recruitment of β-arrestin instead of G proteins, and results in rapid internalization and degradation of CXCL12, functioning as a scavenger receptor. However, recent evidence suggests that CXCR7 may be more than a scavenger or auxiliary receptor of CXCR4 and that it may play essential roles in regulating cancer progression, some of which are independent of CXCR4 and its ligands, such as CXCL12. Constitutively active CXCR7 binds to β-arrestin. This protein complex internalizes to form a scaffold for assembling and activating various cytoplasmic kinases necessary for cell survival and tumor growth. Here we review and discuss the up-to-date knowledge on CXCR7 regulation and function and how this new understanding guides the development of CXCR7 inhibitors, focusing on prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic representation of CXCR7 regulation, function, and therapeutic targeting.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Wang L, Paller CJ, Hong H, De Felice A, Alexander GC, Brawley O. Comparison of systemic treatments for metastatic castration-sensitive prostate cancer: a systematic review and network meta-analysis. JAMA Oncol. 2021;7:412–20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vellky JE, Ricke WA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia. 2020;22:566–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conteduca V, Oromendia C, Eng KW, Bareja R, Sigouros M, Molina A, et al. Clinical features of neuroendocrine prostate cancer. Eur J Cancer. 2019;121:7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  8. Devic E, Rizzoti K, Bodin S, Paquereau L, Knibiehler B, Audigier Y. Expression of a new family of receptors similar to CXC chemokine receptors in endothelial cell precursors. Pathol Biol (Paris). 1999;47:330–8.

    CAS  PubMed  Google Scholar 

  9. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280:35760–6.

    Article  CAS  PubMed  Google Scholar 

  10. Yu S, Crawford D, Tsuchihashi T, Behrens TW, Srivastava D. The chemokine receptor CXCR7 functions to regulate cardiac valve remodeling. Dev Dyn. 2011;240:384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Powell IJ, Chinni SR, Reddy SS, Zaslavsky A, Gavande N. Pro-inflammatory cytokines and chemokines initiate multiple prostate cancer biologic pathways of cellular proliferation, heterogeneity and metastasis in a racially diverse population and underlie the genetic/biologic mechanism of racial disparity: update. Urol Oncol. 2021;39:34–40.

    Article  CAS  PubMed  Google Scholar 

  12. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022;19:237–53.

    Article  CAS  PubMed  Google Scholar 

  13. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med. 1996;184:1101–9.

    Article  CAS  PubMed  Google Scholar 

  14. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382:833–5.

    Article  CAS  PubMed  Google Scholar 

  15. Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res. 2005;65:9891–8.

    Article  CAS  PubMed  Google Scholar 

  16. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62:1832–7.

    CAS  PubMed  Google Scholar 

  17. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem. 2003;89:462–73.

    Article  CAS  PubMed  Google Scholar 

  18. Sun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Min Res. 2005;20:318–29.

    Article  CAS  Google Scholar 

  19. Sun YX, Pedersen EA, Shiozawa Y, Havens AM, Jung Y, Wang J, et al. CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clin Exp Metastasis. 2008;25:765–76.

    Article  CAS  PubMed  Google Scholar 

  20. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med. 2006;203:2201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med. 1998;187:2009–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smit MJ, Verdijk P, van der Raaij-Helmer EM, Navis M, Hensbergen PJ, Leurs R, et al. CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C-dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase. Blood. 2003;102:1959–65.

    Article  CAS  PubMed  Google Scholar 

  23. Luker KE, Steele JM, Mihalko LA, Ray P, Luker GD. Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene. 2010;29:4599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li S, Fong KW, Gritsina G, Zhang A, Zhao JC, Kim J, et al. Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res. 2019;79:2580–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh RK, Lokeshwar BL. The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res. 2011;71:3268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, et al. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature. 1993;365:756–9.

    Article  CAS  PubMed  Google Scholar 

  27. Bartfeld H, Atoynatan T. Activity and properties of macrophage migration inhibitory factor produced by mixed lymphocyte cultures. Nat N. Biol. 1971;230:246–7.

    Article  CAS  Google Scholar 

  28. Alampour-Rajabi S, El Bounkari O, Rot A, Muller-Newen G, Bachelerie F, Gawaz M, et al. MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J. 2015;29:4497–511.

    Article  CAS  PubMed  Google Scholar 

  29. Meyer-Siegler KL, Iczkowski KA, Vera PL. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer. BMC Cancer. 2005;5:73.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rafiei S, Gui B, Wu J, Liu XS, Kibel AS, Jia L. Targeting the MIF/CXCR7/AKT signaling pathway in castration-resistant prostate cancer. Mol Cancer Res. 2019;17:263–76.

    Article  CAS  PubMed  Google Scholar 

  31. Chen YC, Zhang XW, Niu XH, Xin DQ, Zhao WP, Na YQ, et al. Macrophage migration inhibitory factor is a direct target of HBP1-mediated transcriptional repression that is overexpressed in prostate cancer. Oncogene. 2010;29:3067–78.

    Article  CAS  PubMed  Google Scholar 

  32. Simpson KD, Templeton DJ, Cross JV. Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. J Immunol. 2012;189:5533–40.

    Article  CAS  PubMed  Google Scholar 

  33. Hussain F, Freissmuth M, Volkel D, Thiele M, Douillard P, Antoine G, et al. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Mol Cancer Ther. 2013;12:1223–34.

    Article  CAS  PubMed  Google Scholar 

  34. Tawadros T, Alonso F, Jichlinski P, Clarke N, Calandra T, Haefliger JA, et al. Release of macrophage migration inhibitory factor by neuroendocrine-differentiated LNCaP cells sustains the proliferation and survival of prostate cancer cells. Endocr Relat Cancer. 2013;20:137–49.

    Article  CAS  PubMed  Google Scholar 

  35. Meyer-Siegler KL, Iczkowski KA, Leng L, Bucala R, Vera PL. Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J Immunol. 2006;177:8730–9.

    Article  CAS  PubMed  Google Scholar 

  36. Twu O, Dessi D, Vu A, Mercer F, Stevens GC, de Miguel N, et al. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci USA. 2014;111:8179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP, et al. Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci USA. 2010;107:628–32.

    Article  PubMed  Google Scholar 

  38. Ray P, Mihalko LA, Coggins NL, Moudgil P, Ehrlich A, Luker KE, et al. Carboxy-terminus of CXCR7 regulates receptor localization and function. Int J Biochem Cell Biol. 2012;44:669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nguyen HT, Reyes-Alcaraz A, Yong HJ, Nguyen LP, Park HK, Inoue A, et al. CXCR7: a beta-arrestin-biased receptor that potentiates cell migration and recruits beta-arrestin2 exclusively through Gbetagamma subunits and GRK2. Cell Biosci. 2020;10:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zarca A, Perez C, van den Bor J, Bebelman JP, Heuninck J, de Jonker RJF, et al. Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization. Cells. 2021;10:618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoffmann F, Muller W, Schutz D, Penfold ME, Wong YH, Schulz S, et al. Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal serine/threonine residues. J Biol Chem. 2012;287:28362–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahabaleshwar H, Tarbashevich K, Nowak M, Brand M, Raz E. beta-arrestin control of late endosomal sorting facilitates decoy receptor function and chemokine gradient formation. Development. 2012;139:2897–902.

    Article  CAS  PubMed  Google Scholar 

  43. Lefkowitz RJ, Shenoy SK. Transduction of receptor signals by beta-arrestins. Science. 2005;308:512–7.

    Article  CAS  PubMed  Google Scholar 

  44. Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood. 2009;113:6085–93.

    Article  CAS  PubMed  Google Scholar 

  45. Decaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem. 2011;286:32188–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsiao JJ, Ng BH, Smits MM, Wang J, Jasavala RJ, Martinez HD, et al. Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility. BMC Cancer. 2015;15:204.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Song X, Coffa S, Fu H, Gurevich VV. How does arrestin assemble MAPKs into a signaling complex? J Biol Chem. 2009;284:685–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tarnowski M, Grymula K, Liu R, Tarnowska J, Drukala J, Ratajczak J, et al. Macrophage migration inhibitory factor is secreted by rhabdomyosarcoma cells, modulates tumor metastasis by binding to CXCR4 and CXCR7 receptors and inhibits recruitment of cancer-associated fibroblasts. Mol Cancer Res. 2010;8:1328–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kallifatidis G, Munoz D, Singh RK, Salazar N, Hoy JJ, Lokeshwar BL. beta-Arrestin-2 counters CXCR7-mediated EGFR transactivation and proliferation. Mol Cancer Res. 2016;14:493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Becker JH, Gao Y, Soucheray M, Pulido I, Kikuchi E, Rodriguez ML, et al. CXCR7 reactivates ERK signaling to promote resistance to EGFR kinase inhibitors in NSCLC. Cancer Res. 2019;79:4439–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoy JJ, Kallifatidis G, Smith DK, Lokeshwar BL. Inhibition of androgen receptor promotes CXC-chemokine receptor 7-mediated prostate cancer cell survival. Sci Rep. 2017;7:3058.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Salazar N, Munoz D, Kallifatidis G, Singh RK, Jorda M, Lokeshwar BL. The chemokine receptor CXCR7 interacts with EGFR to promote breast cancer cell proliferation. Mol Cancer. 2014;13:198.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sebolt-Leopold JS. Development of anticancer drugs targeting the MAP kinase pathway. Oncogene. 2000;19:6594–9.

    Article  CAS  PubMed  Google Scholar 

  54. Marte BM, Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci. 1997;22:355–8.

    Article  CAS  PubMed  Google Scholar 

  55. Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD, et al. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate. 2006;66:32–48.

    Article  CAS  PubMed  Google Scholar 

  56. Wong D, Korz W. Translating an antagonist of chemokine receptor CXCR4: from bench to bedside. Clin Cancer Res. 2008;14:7975–80.

    Article  CAS  PubMed  Google Scholar 

  57. Ray P, Lewin SA, Mihalko LA, Lesher-Perez SC, Takayama S, Luker KE, et al. Secreted CXCL12 (SDF-1) forms dimers under physiological conditions. Biochem J. 2012;442:433–42.

    Article  CAS  PubMed  Google Scholar 

  58. Grymula K, Tarnowski M, Wysoczynski M, Drukala J, Barr FG, Ratajczak J, et al. Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer. 2010;127:2554–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Proost P, Mortier A, Loos T, Vandercappellen J, Gouwy M, Ronsse I, et al. Proteolytic processing of CXCL11 by CD13/aminopeptidase N impairs CXCR3 and CXCR7 binding and signaling and reduces lymphocyte and endothelial cell migration. Blood. 2007;110:37–44.

    Article  CAS  PubMed  Google Scholar 

  60. Bai Y, Yang Y, Yan Y, Zhong J, Blee AM, Pan Y, et al. RUNX2 overexpression and PTEN haploinsufficiency cooperate to promote CXCR7 expression and cellular trafficking, AKT hyperactivation and prostate tumorigenesis. Theranostics. 2019;9:3459–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saha A, Ahn S, Blando J, Su F, Kolonin MG, DiGiovanni J. Proinflammatory CXCL12-CXCR4/CXCR7 signaling axis drives myc-induced prostate cancer in obese mice. Cancer Res. 2017;77:5158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jung Y, Cackowski FC, Yumoto K, Decker AM, Wang J, Kim JK, et al. CXCL12gamma promotes metastatic castration-resistant prostate cancer by inducing cancer stem cell and neuroendocrine phenotypes. Cancer Res. 2018;78:2026–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Willems E, Dedobbeleer M, Digregorio M, Lombard A, Goffart N, Lumapat PN, et al. Aurora A plays a dual role in migration and survival of human glioblastoma cells according to the CXCL12 concentration. Oncogene. 2019;38:73–87.

    Article  CAS  PubMed  Google Scholar 

  64. Guo C, Whitmarsh AJ. The beta-arrestin-2 scaffold protein promotes c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus. J Biol Chem. 2008;283:15903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhan X, Kaoud TS, Dalby KN, Gurevich VV. Nonvisual arrestins function as simple scaffolds assembling the MKK4-JNK3alpha2 signaling complex. Biochemistry. 2011;50:10520–9.

    Article  CAS  PubMed  Google Scholar 

  66. Pakharukova N, Masoudi A, Pani B, Staus DP, Lefkowitz RJ. Allosteric activation of proto-oncogene kinase Src by GPCR-beta-arrestin complexes. J Biol Chem. 2020;295:16773–84.

    Article  CAS  PubMed  Google Scholar 

  67. Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, et al. A model for the signal initiation complex between arrestin-3 and the Src family kinase Fgr. J Mol Biol. 2022;434:167400.

    Article  CAS  PubMed  Google Scholar 

  68. Bryja V, Gradl D, Schambony A, Arenas E, Schulte G. Beta-arrestin is a necessary component of Wnt/beta-catenin signaling in vitro and in vivo. Proc Natl Acad Sci USA. 2007;104:6690–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wani N, Nasser MW, Ahirwar DK, Zhao H, Miao Z, Shilo K, et al. C-X-C motif chemokine 12/C-X-C chemokine receptor type 7 signaling regulates breast cancer growth and metastasis by modulating the tumor microenvironment. Breast Cancer Res. 2014;16:R54.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Maussang D, Mujic-Delic A, Descamps FJ, Stortelers C, Vanlandschoot P, Stigter-van Walsum M, et al. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo. J Biol Chem. 2013;288:29562–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qiao Y, Zhang C, Li A, Wang D, Luo Z, Ping Y, et al. IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene. 2018;37:873–83.

    Article  CAS  PubMed  Google Scholar 

  72. Van Rechem C, Rood BR, Touka M, Pinte S, Jenal M, Guerardel C, et al. Scavenger chemokine (CXC motif) receptor 7 (CXCR7) is a direct target gene of HIC1 (hypermethylated in cancer 1). J Biol Chem. 2009;284:20927–35.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hao M, Li Y, Wang J, Qin J, Wang Y, Ding Y, et al. HIC1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition. J Pathol. 2017;242:409–20.

    Article  CAS  PubMed  Google Scholar 

  74. Zheng J, Wang J, Sun X, Hao M, Ding T, Xiong D, et al. HIC1 modulates prostate cancer progression by epigenetic modification. Clin Cancer Res. 2013;19:1400–10.

    Article  CAS  PubMed  Google Scholar 

  75. Kerdivel G, Boudot A, Pakdel F. Estrogen represses CXCR7 gene expression by inhibiting the recruitment of NFkappaB transcription factor at the CXCR7 promoter in breast cancer cells. Biochem Biophys Res Commun. 2013;431:729–33.

    Article  CAS  PubMed  Google Scholar 

  76. Huang J, Hagberg Thulin M, Damber JE, Welen K. The roles of RUNX2 and osteoclasts in regulating expression of steroidogenic enzymes in castration-resistant prostate cancer cells. Mol Cell Endocrinol. 2021;535:111380.

    Article  CAS  PubMed  Google Scholar 

  77. Yang Y, Bai Y, He Y, Zhao Y, Chen J, Ma L, et al. PTEN loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer. Clin Cancer Res. 2018;24:834–46.

    Article  CAS  PubMed  Google Scholar 

  78. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo Y, Li Q, Yang X, Wei D, Feng B, Li M, et al. Overexpression of CXCR7 is a novel indicator for enzalutamide resistance in castration-resistant prostate cancer patients. Dis Markers. 2021;2021:6649579.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zabel BA, Wang Y, Lewen S, Berahovich RD, Penfold ME, Zhang P, et al. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol. 2009;183:3204–11.

    Article  CAS  PubMed  Google Scholar 

  81. Wong D, Kandagatla P, Korz W, Chinni SR. Targeting CXCR4 with CTCE-9908 inhibits prostate tumor metastasis. BMC Urol. 2014;14:12.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Festuccia C, Mancini A, Gravina GL, Colapietro A, Vetuschi A, Pompili S, et al. Dual CXCR4 and E-Selectin Inhibitor, GMI-1359, Shows Anti-Bone Metastatic Effects and Synergizes with Docetaxel in Prostate Cancer Cell Intraosseous Growth. Cells. 2020;9:32.

    Article  CAS  Google Scholar 

  83. Liu Y, Carson-Walter E, Walter KA. Targeting chemokine receptor CXCR7 inhibits glioma cell proliferation and mobility. Anticancer Res. 2015;35:53–64.

    PubMed  Google Scholar 

  84. Gustavsson M, Wang L, van Gils N, Stephens BS, Zhang P, Schall TJ, et al. Structural basis of ligand interaction with atypical chemokine receptor 3. Nat Commun. 2017;8:14135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, et al. Modulators of CXCR4 and CXCR7/ACKR3 Function. Mol Pharm. 2019;96:737–52.

    Article  CAS  Google Scholar 

  86. Salazar N, Carlson JC, Huang K, Zheng Y, Oderup C, Gross J, et al. A chimeric antibody against ACKR3/CXCR7 in combination with TMZ activates immune responses and extends survival in mouse GBM models. Mol Ther. 2018;26:1354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Menhaji-Klotz E, Ward J, Brown JA, Loria PM, Tan C, Hesp KD, et al. Discovery of diphenylacetamides as CXCR7 inhibitors with novel beta-arrestin antagonist activity. ACS Med Chem Lett. 2020;11:1330–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Richard-Bildstein S, Aissaoui H, Pothier J, Schafer G, Gnerre C, Lindenberg E, et al. Discovery of the potent, selective, orally available CXCR7 antagonist ACT-1004-239. J Med Chem. 2020;63:15864–82.

    Article  CAS  PubMed  Google Scholar 

  89. Huynh C, Seeland S, Segrestaa J, Gnerre C, Hogeback J, Meyer Zu Schwabedissen HE, et al. Absorption, metabolism, and excretion of ACT-1004-1239, a first-in-class CXCR7 antagonist: in vitro, preclinical, and clinical data. Front Pharm. 2022;13:812065.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Prostate Cancer Foundation 2017CHAL2008 (to JY), the U.S. National Institutes of Health R01CA172384 (to JY), the Northwestern Prostate SPORE P50CA180995 (to JY), and the NIH/NCI training grant T32CA009560 (to GG).

Author information

Authors and Affiliations

Authors

Contributions

GG and JY wrote the manuscript.

Corresponding author

Correspondence to Jindan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsina, G., Yu, J. CXCR7 as a novel therapeutic target for advanced prostate cancer. Oncogene 42, 785–792 (2023). https://doi.org/10.1038/s41388-023-02597-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02597-7

This article is cited by

Search

Quick links