Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitochondrial structure and function adaptation in residual triple negative breast cancer cells surviving chemotherapy treatment

Abstract

Neoadjuvant chemotherapy (NACT) used for triple negative breast cancer (TNBC) eradicates tumors in ~45% of patients. Unfortunately, TNBC patients with substantial residual cancer burden have poor metastasis free and overall survival rates. We previously demonstrated mitochondrial oxidative phosphorylation (OXPHOS) was elevated and was a unique therapeutic dependency of residual TNBC cells surviving NACT. We sought to investigate the mechanism underlying this enhanced reliance on mitochondrial metabolism. Mitochondria are morphologically plastic organelles that cycle between fission and fusion to maintain mitochondrial integrity and metabolic homeostasis. The functional impact of mitochondrial structure on metabolic output is highly context dependent. Several chemotherapy agents are conventionally used for neoadjuvant treatment of TNBC patients. Upon comparing mitochondrial effects of conventional chemotherapies, we found that DNA-damaging agents increased mitochondrial elongation, mitochondrial content, flux of glucose through the TCA cycle, and OXPHOS, whereas taxanes instead decreased mitochondrial elongation and OXPHOS. The mitochondrial effects of DNA-damaging chemotherapies were dependent on the mitochondrial inner membrane fusion protein optic atrophy 1 (OPA1). Further, we observed heightened OXPHOS, OPA1 protein levels, and mitochondrial elongation in an orthotopic patient-derived xenograft (PDX) model of residual TNBC. Pharmacologic or genetic disruption of mitochondrial fusion and fission resulted in decreased or increased OXPHOS, respectively, revealing longer mitochondria favor oxphos in TNBC cells. Using TNBC cell lines and an in vivo PDX model of residual TNBC, we found that sequential treatment with DNA-damaging chemotherapy, thus inducing mitochondrial fusion and OXPHOS, followed by MYLS22, a specific inhibitor of OPA1, was able to suppress mitochondrial fusion and OXPHOS and significantly inhibit regrowth of residual tumor cells. Our data suggest that TNBC mitochondria can optimize OXPHOS through OPA1-mediated mitochondrial fusion. These findings may provide an opportunity to overcome mitochondrial adaptations of chemoresistant TNBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conventional chemotherapies differentially alter mitochondrial metabolism in TNBC cells.
Fig. 2: Mitochondrial structure is altered in residual TNBC cells surviving conventional chemotherapy treatments.
Fig. 3: Pharmacologic perturbation of mitochondrial morphology alters mitochondrial metabolism in TNBC cells.
Fig. 4: Genetic perturbation of mitochondrial morphology alters mitochondrial metabolism in TNBC cells.
Fig. 5: Mitochondrial morphology impacts chemo-sensitivity of TNBC cells.
Fig. 6: Mitochondrial adaptations in a PDX model of post-AC residual TNBC.
Fig. 7: Pharmacologic inhibition of OPA1 slows residual tumor regrowth in a PDX model.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the paper and its supplementary materials.

References

  1. Garrido-Castro AC, Lin NU, Polyak K. Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Disco. 2019;9:176–98. https://doi.org/10.1158/2159-8290.CD-18-1177.

    Article  CAS  Google Scholar 

  2. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–72. https://doi.org/10.1016/S0140-6736(13)62422-8.

    Article  PubMed  Google Scholar 

  3. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to Neoadjuvant Therapy and Long-Term Survival in Patients With Triple-Negative Breast Cancer. J Clin Oncol. 2008;26:1275–81. https://doi.org/10.1200/jco.2007.14.4147.

    Article  PubMed  Google Scholar 

  4. Symmans WF, Wei C, Gould R, Yu X, Zhang Y, Liu M, et al. Long-Term Prognostic Risk After Neoadjuvant Chemotherapy Associated With Residual Cancer Burden and Breast Cancer Subtype. J Clin Oncol. 2017;35:1049–60. https://doi.org/10.1200/JCO.2015.63.1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30:1796–804. https://doi.org/10.1200/JCO.2011.38.8595.

    Article  Google Scholar 

  6. Schmid P, Cortes J, Pusztai L, McArthur H, Kummel S, Bergh J, et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N Engl J Med. 2020;382:810–21. https://doi.org/10.1056/NEJMoa1910549.

    Article  CAS  PubMed  Google Scholar 

  7. Echeverria GV, Ge Z, Seth S, Zhang X, Jeter-Jones S, Zhou X, et al. (2019). Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci Transl Med. 11. https://doi.org/10.1126/scitranslmed.aav0936.

  8. Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. (2018). An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. https://doi.org/10.1038/s41591-018-0052-4.

  9. Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, et al. MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metab. 2017;26:633–47.e637. https://doi.org/10.1016/j.cmet.2017.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Decker CW, Garcia J, Gatchalian K, Arceneaux D, Choi C, Han D, et al. Mitofusin-2 mediates doxorubicin sensitivity and acute resistance in Jurkat leukemia cells. Biochem Biophys Rep. 2020;24:100824 https://doi.org/10.1016/j.bbrep.2020.100824.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Disco. 2017;7:716–35. https://doi.org/10.1158/2159-8290.CD-16-0441.

    Article  CAS  Google Scholar 

  12. Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23:1234–40. https://doi.org/10.1038/nm.4399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vellinga TT, Borovski T, de Boer VC, Fatrai S, van Schelven S, Trumpi K, et al. SIRT1/PGC1alpha-Dependent Increase in Oxidative Phosphorylation Supports Chemotherapy Resistance of Colon Cancer. Clin Cancer Res. 2015;21:2870–9. https://doi.org/10.1158/1078-0432.CCR-14-2290.

    Article  CAS  PubMed  Google Scholar 

  14. Yadav N, Kumar S, Marlowe T, Chaudhary AK, Kumar R, Wang J, et al. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis. 2015;6:e1969 https://doi.org/10.1038/cddis.2015.305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ippolito L, Marini A, Cavallini L, Morandi A, Pietrovito L, Pintus G, et al. Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells. Oncotarget. 2016;7:61890–904. https://doi.org/10.18632/oncotarget.11301.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee S, Lee JS, Seo J, Lee SH, Kang JH, Song J, et al. Targeting Mitochondrial Oxidative Phosphorylation Abrogated Irinotecan Resistance in NSCLC. Sci Rep. 2018;8:15707 https://doi.org/10.1038/s41598-018-33667-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen D, Barsoumian HB, Fischer G, Yang L, Verma V, Younes AI, et al. (2020). Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. J Immunother Cancer, 8. https://doi.org/10.1136/jitc-2019-000289.

  18. Lewis MR, Lewis WH. Mitochondria in Tissue Culture. Science. 1914;39:330–3. https://doi.org/10.1126/science.39.1000.330.

    Article  CAS  PubMed  Google Scholar 

  19. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5. https://doi.org/10.1126/science.1219855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 2015;4:6–13. https://doi.org/10.1016/j.redox.2014.11.006.

    Article  CAS  PubMed  Google Scholar 

  21. Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller MT. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci. 2003;13:2763–74. https://doi.org/10.1242/jcs.00479.

    Article  CAS  Google Scholar 

  22. Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 2001;114:867–74. https://www.ncbi.nlm.nih.gov/pubmed/11181170 Retrieved from.

    Article  CAS  PubMed  Google Scholar 

  23. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160:189–200. https://doi.org/10.1083/jcb.200211046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qi Y, Yan L, Yu C, Guo X, Zhou X, Hu X, et al. Structures of human mitofusin 1 provide insight into mitochondrial tethering. J Cell Biol. 2016;215:621–9. https://doi.org/10.1083/jcb.201609019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Del Dotto V, Mishra P, Vidoni S, Fogazza M, Maresca A, Caporali L, et al. OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions. Cell Rep. 2017;19:2557–71. https://doi.org/10.1016/j.celrep.2017.05.073.

    Article  CAS  PubMed  Google Scholar 

  26. Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, et al. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res. 2011;21:12–20. https://doi.org/10.1101/gr.108696.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baker MJ, Lampe PA, Stojanovski D, Korwitz A, Anand R, Tatsuta T, et al. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J. 2014;33:578–93. https://doi.org/10.1002/embj.201386474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee H, Smith SB, Yoon Y. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J Biol Chem. 2017;292:7115–30. https://doi.org/10.1074/jbc.M116.762567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee H, Smith SB, Sheu SS, Yoon Y. The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress. J Biol Chem. 2020;295:6543–60. https://doi.org/10.1074/jbc.RA119.010983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalia R, Wang RY, Yusuf A, Thomas PV, Agard DA, Shaw JM, et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature. 2018;558:401–5. https://doi.org/10.1038/s41586-018-0211-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, Lambert HP, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature. 2021;593:435–9.

    Article  CAS  PubMed  Google Scholar 

  32. Hoitzing H, Johnston IG, Jones NS. What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research. Bioessays. 2015;37:687–700. https://doi.org/10.1002/bies.201400188.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hagenbuchner J, Kuznetsov AV, Obexer P, Ausserlechner MJ. BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery. Oncogene. 2013;32:4748–57. https://doi.org/10.1038/onc.2012.500.

    Article  CAS  PubMed  Google Scholar 

  34. Yu M, Nguyen ND, Huang Y, Lin D, Fujimoto TN, Molkentine JM, et al. (2019). Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight, 5. https://doi.org/10.1172/jci.insight.126915.

  35. Chen L, Zhang J, Lyu Z, Chen Y, Ji X, Cao H, et al. Positive feedback loop between mitochondrial fission and Notch signaling promotes survivin-mediated survival of TNBC cells. Cell Death Dis. 2018;9:1050 https://doi.org/10.1038/s41419-018-1083-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Humphries BA, Cutter AC, Buschhaus JM, Chen Y-C, Qyli T, Palagama DSW, et al. Enhanced mitochondrial fission suppresses signaling and metastasis in triple-negative breast cancer. Breast Cancer Res. 2020;22:60 https://doi.org/10.1186/s13058-020-01301-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32:4814–24. https://doi.org/10.1038/onc.2012.494.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng CT, Kuo CY, Ouyang C, Li CF, Chung Y, Chan DC, et al. Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells. Cancer Res. 2016;76:5006–18. https://doi.org/10.1158/0008-5472.CAN-15-2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang R, Mishra P, Garbis SD, Moradian A, Sweredoski MJ, Chan DC. Identification of new OPA1 cleavage site reveals that short isoforms regulate mitochondrial fusion. Mol Biol Cell. 2021;32:157–68. https://doi.org/10.1091/mbc.E20-09-0605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herkenne S, Ek O, Zamberlan M, Pellattiero A, Chergova M, Chivite I, et al. Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. Cell Metab. 2020;31:987–1003.e1008. https://doi.org/10.1016/j.cmet.2020.04.007.

    Article  CAS  PubMed  Google Scholar 

  41. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14:193–204. https://doi.org/10.1016/j.devcel.2007.11.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blum JL, Flynn PJ, Yothers G, Asmar L, Geyer CE Jr, Jacobs SA, et al. Anthracyclines in Early Breast Cancer: The ABC Trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J Clin Oncol. 2017;35:2647–55. https://doi.org/10.1200/JCO.2016.71.4147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Echeverria GV, Powell E, Seth S, Ge Z, Carugo A, Bristow C, et al. High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. Nat Commun. 2018;9:5079 https://doi.org/10.1038/s41467-018-07406-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell. 2013;23:302–15. https://doi.org/10.1016/j.ccr.2013.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514:628–32. https://doi.org/10.1038/nature13611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui L, Gouw AM, LaGory EL, Guo S, Attarwala N, Tang Y, et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol. 2021;39:357–67. https://doi.org/10.1038/s41587-020-0707-9.

    Article  CAS  PubMed  Google Scholar 

  47. Park JH, Vithayathil S, Kumar S, Sung PL, Dobrolecki LE, Putluri V, et al. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer. Cell Rep. 2016;14:2154–65. https://doi.org/10.1016/j.celrep.2016.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22:427–32. https://doi.org/10.1038/nm.4055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gong Y, Ji P, Yang YS, Xie S, Yu TJ, Xiao Y, et al. Metabolic-Pathway-Based Subtyping of Triple-Negative Breast Cancer Reveals Potential Therapeutic Targets. Cell Metab. 2021;33:51–64.e59. https://doi.org/10.1016/j.cmet.2020.10.012.

    Article  CAS  PubMed  Google Scholar 

  50. Mahendralingam MJ, Kim H, McCloskey CW, Aliar K, Casey AE, Tharmapalan P, et al. Mammary epithelial cells have lineage-rooted metabolic identities. Nat Metab. 2021;3:665–81. https://doi.org/10.1038/s42255-021-00388-6.

    Article  CAS  PubMed  Google Scholar 

  51. Magbanua MJ, Wolf DM, Yau C, Davis SE, Crothers J, Au A, et al. Serial expression analysis of breast tumors during neoadjuvant chemotherapy reveals changes in cell cycle and immune pathways associated with recurrence and response. Breast Cancer Res. 2015;17:73 https://doi.org/10.1186/s13058-015-0582-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yam C, Hess KR, Litton JK, Yang WT, Piwnica-Worms H, Mittendorf EA, et al. A randomized, triple negative breast cancer enrolling trial to confirm molecular profiling improves survival (ARTEMIS). J Clin Oncol. 2017;35:TPS590–TPS590. https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS590.

    Article  Google Scholar 

  53. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. https://doi.org/10.1038/nature11412.

    Article  CAS  Google Scholar 

  54. Anderson GR, Wardell SE, Cakir M, Yip C, Ahn YR, Ali M, et al. Dysregulation of mitochondrial dynamics proteins are a targetable feature of human tumors. Nat Commun. 2018;9:1677 https://doi.org/10.1038/s41467-018-04033-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miret-Casals L, Sebastian D, Brea J, Rico-Leo EM, Palacin M, Fernandez-Salguero PM, et al. Identification of New Activators of Mitochondrial Fusion Reveals a Link between Mitochondrial Morphology and Pyrimidine Metabolism. Cell Chem Biol. 2018;25:268–278.e264. https://doi.org/10.1016/j.chembiol.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  56. Amaravadi RK, Schilder RJ, Martin LP, Levin M, Graham MA, Weng DE, et al. A Phase I Study of the SMAC-Mimetic Birinapant in Adults with Refractory Solid Tumors or Lymphoma. Mol Cancer Ther. 2015;14:2569–75. https://doi.org/10.1158/1535-7163.MCT-15-0475.

    Article  CAS  PubMed  Google Scholar 

  57. Tamayo C, Diamond S. Review of clinical trials evaluating safety and efficacy of milk thistle (Silybum marianum [L.] Gaertn.). Integr Cancer Ther. 2007;6:146–57. https://doi.org/10.1177/1534735407301942.

    Article  CAS  PubMed  Google Scholar 

  58. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7:16878 https://doi.org/10.1038/s41598-017-17204-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peng JY, Lin CC, Chen YJ, Kao LS, Liu YC, Chou CC, et al. Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS Comput Biol. 2011;7:e1002212 https://doi.org/10.1371/journal.pcbi.1002212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Du D, Tan L, Wang Y, Peng B, Weinstein JN, Wondisford FE, et al. ElemCor: accurate data analysis and enrichment calculation for high-resolution LC-MS stable isotope labeling experiments. BMC Bioinforma. 2019;20:89 https://doi.org/10.1186/s12859-019-2669-9.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the breast cancer patients who donated their biopsies for cell lines and PDX models. Ms Janice Cowden and Mr Joshua Newby provided research advocacy support for this work. Dr Helen Piwnica-Worms provided the PIM001-P PDX model. The generation of PIM001-P was supported by a generous gift from the Cazalot family and the MD Anderson Women’s Cancer Moonshot Program. Fluorescence microscopy analysis was conducted at the Integrated Microscopy Core at Baylor College of Medicine and the Center for Advanced Microscopy and Image Informatics (CAMII) with funding from NIH (DK56338, CA125123, ES030285), and CPRIT (RP150578, RP170719), the Dan L Duncan Comprehensive Cancer Center, and the John S. Dunn Gulf Coast Consortium for Chemical Genomics. Seahorse was conducted at the Mouse Metabolism and Phenotyping Core supported by NIH UM1HG006348 and NIH R01DK114356, NIH R01HL130249. Metabolomics studies were conducted at The MD Anderson Cancer Center Metabolomics Core Facility supported by NIH grants S10OD012304-01 and P30CA016672. STR cell line validation was conducted by the Cytogenetics and Cell Authentication Core at M.D. Anderson Cancer Center. Immunohistochemistry was conducted at the Breast Center Pathology Core and Lab was created to support the research and clinical activities of the Breast Center at Baylor College of Medicine, supported by the Breast Center and a variety of research grants awarded to its faculty, including one of only nine Specialized Programs of Research Excellence (SPORE) in Breast Cancer granted by the National Institute of Health. Vectra microscopy and analysis was conducted with the Pathology and Histology at Baylor College of Medicine with funding from P30 Cancer Center Support Grant (NCI-CA125123).

Funding

GVE is a CPRIT Scholar in Cancer Research. Funding sources that supported this work include the Cancer Prevention and Research Institute of Texas RR200009 (to GVE); NIH 1K22CA241113-01 (to GVE), P30CA016672 (to PLL), P30 CA125123 (to TW), 1R01HD102149-01A1 (to WP), T32GM139534 (to KEP) T32GM136560-02 (to MJB), and F31CA275397 (to KEP); a Myra Branum Wilson Baylor Research Advocates for Student Scientists Scholarship (to MJB); a charitable gift from Sage Patient Advocates (to GVE); a Breast Cancer Alliance Young Investigator Grant (to GVE), and National Science Foundation Graduate Research Fellowship 2140736 (to MJB).

Author information

Authors and Affiliations

Authors

Contributions

MLB and GVE were responsible for overall study design, experimentation, data interpretation, and writing of the paper. JL conducted animal experiments and quantitative PCR under the supervision of GVE. KEP conducted IHC, co-IF, Vectra, and assisted with Seahorse assays under the supervision of GVE. MJB conducted mitochondrial assays and western blotting under the supervision of GVE. EBG assisted with confocal microscopy image analysis under the supervision of GVE. LT and SAM conducted metabolomics sample processing under the supervision of PLL. IM conducted metabolomics data analysis under the supervision of PLL. TW conducted statistical analyses. MM conducted TEM of TNBC cell lines. BL assisted with design and analysis of chemotherapy treatments. JPB conducted TEM of PDX tumor tissues and assisted with analysis. WP assisted with analysis of TEM and mitochondria function experiments. PLL oversaw metabolomics experiments and analyses. All authors have critically read, edited, and approved the final version of this paper.

Corresponding author

Correspondence to Gloria V. Echeverria.

Ethics declarations

Competing interests

BL received research funding from Genentech, Merck, Puma Biotechnology, and Takeda oncology and consulting fees from Astra Zeneca, Novartis, Natera, Celcuity, and Pfizer. All other authors have nothing to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, M.L., Lee, J., Pendleton, K.E. et al. Mitochondrial structure and function adaptation in residual triple negative breast cancer cells surviving chemotherapy treatment. Oncogene 42, 1117–1131 (2023). https://doi.org/10.1038/s41388-023-02596-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02596-8

This article is cited by

Search

Quick links