Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chaperone-mediated autophagy promotes PCa survival during ARPI through selective proteome remodeling

Abstract

The androgen receptor (AR) plays an important role in PCa metabolism, with androgen receptor pathway inhibition (ARPI) subjecting PCa cells to acute metabolic stress caused by reduced biosynthesis and energy production. Defining acute stress response mechanisms that alleviate ARPI stress and therefore mediate prostate cancer (PCa) treatment resistance will help improve therapeutic outcomes of patients treated with ARPI. We identified the up-regulation of chaperone-mediated autophagy (CMA) in response to acute ARPI stress, which persisted in castration-resistant PCa (CRPC); previously undefined in PCa. CMA is a selective protein degradation pathway and a key stress response mechanism up-regulated under several stress stimuli, including metabolic stress. Through selective protein degradation, CMA orchestrates the cellular stress response by regulating cellular pathways through selective proteome remodeling. Through broad-spectrum proteomic analysis, CMA coordinates metabolic reprogramming of PCa cells to sustain PCa growth and survival during ARPI; through the upregulation of mTORC1 signaling and pathways associated with PCa biosynthesis and energetics. This not only promoted PCa growth during ARPI, but also promoted the emergence of CRPC in-vivo. During CMA inhibition, PCa metabolism is compromised, leading to ATP depletion, resulting in a profound anti-proliferative effect on PCa cells, and is enhanced when combined with ARPI. Furthermore, CMA inhibition prevented in-vivo tumour formation, and also re-sensitized enzalutamide-resistant cell lines in-vitro. The profound anti-proliferative effect of CMA inhibition was attributed to cell cycle arrest mediated through p53 transcriptional repression of E2F target genes. In summary, CMA is an acute ARPI stress response mechanism, essential in alleviating ARPI induced metabolic stress, essential for ensuring PCa growth and survival. CMA plays a critical role in the development of ARPI resistance in PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ARPI induced stress upregulates CMA in AR driven PCa.
Fig. 2: CMA is essential for PCa growth and promotes ARPI treatment resistance.
Fig. 3: CMA coordinates the ARPI stress response in PCa cells through proteome remodeling.
Fig. 4: CMA sustains the metabolism of PCa cells and protects against ARPI induced metabolic stress.
Fig. 5: CMAi compromises PCa cell proliferation, promoting cell cycle arrest.
Fig. 6: Canonical CMA recognition motif shared between HK1 and HK2.

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD036227”.

References

  1. Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30:2719–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Culig Z, Santer FR. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 2014;33:413–27.

    Article  CAS  PubMed  Google Scholar 

  3. Al Nakouzi N, Wang CK, Beraldi E, Jager W, Ettinger S, Fazli L, et al. Clusterin knockdown sensitizes prostate cancer cells to taxane by modulating mitosis. EMBO Mol Med. 2016;8:761–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L, et al. Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int. 2006;98:1082–9.

    Article  CAS  PubMed  Google Scholar 

  5. Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L, et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res. 2004;64:6595–602.

    Article  CAS  PubMed  Google Scholar 

  6. Shiota M, Bishop JL, Nip KM, Zardan A, Takeuchi A, Cordonnier T, et al. Hsp27 regulates epithelial-mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res. 2013;73:3109–19.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang F, Kumano M, Beraldi E, Fazli L, Du C, Moore S, et al. Clusterin facilitates stress-induced lipidation of LC3 and autophagosome biogenesis to enhance cancer cell survival. Nat Commun. 2014;5:5775.

    Article  CAS  PubMed  Google Scholar 

  8. Zoubeidi A, Ettinger S, Beraldi E, Hadaschik B, Zardan A, Klomp LW, et al. Clusterin facilitates COMMD1 and I-kappaB degradation to enhance NF-kappaB activity in prostate cancer cells. Mol Cancer Res. 2010;8:119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res. 2007;67:10455–65.

    Article  CAS  PubMed  Google Scholar 

  10. Zoubeidi A, Zardan A, Wiedmann RM, Locke J, Beraldi E, Fazli L, et al. Hsp27 promotes insulin-like growth factor-I survival signaling in prostate cancer via p90Rsk-dependent phosphorylation and inactivation of BAD. Cancer Res. 2010;70:2307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: A unique way to enter the lysosome world. Trends Cell Biol. 2012;22:407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 2018;19:365–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Catarino S, Pereira P, Girao H. Molecular control of chaperone-mediated autophagy. Essays Biochem. 2017;61:663–74.

    Article  PubMed  Google Scholar 

  14. Kaushik S, Cuervo AM. Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress. Mol Asp Med. 2006;27:444–54.

    Article  CAS  Google Scholar 

  15. Park C, Suh Y, Cuervo AM. Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat Commun. 2015;6:6823.

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Yang Q, Mao Z. Signaling and induction of chaperone-mediated autophagy by the endoplasmic reticulum under stress conditions. Autophagy 2018;14:1094–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schneider JL, Suh Y, Cuervo AM. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 2014;20:417–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tasset I, Cuervo AM. Role of chaperone-mediated autophagy in metabolism. FEBS J. 2016;283:2403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, et al. Chaperone-mediated autophagy at a glance. J Cell Sci. 2011;124:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirchner P, Bourdenx M, Madrigal-Matute J, Tiano S, Diaz A, Bartholdy BA, et al. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 2019;17:e3000301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hao Y, Kacal M, Ouchida AT, Zhang B, Norberg E, Vakifahmetoglu-Norberg H. Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy 2019;15:1558–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kon M, Kiffin R, Koga H, Chapochnick J, Macian F, Varticovski L, et al. Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med. 2011;3:109ra17.

    Article  Google Scholar 

  23. Saha T. LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy . 2012;8:1643–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robert G, Jacquel A, Auberger P. Chaperone-mediated autophagy and its emerging role in hematological malignancies. Cells. 2019;8:1260.

  25. Nikesitch N, Rebeiro P, Ho LL, Pothula S, Wang XM, Khong T, et al. The role of chaperone-mediated autophagy in Bortezomib resistant multiple myeloma. Cells. 2021;10:3464.

  26. Kuruma H, Matsumoto H, Shiota M, Bishop J, Lamoureux F, Thomas C, et al. A novel antiandrogen, Compound 30, suppresses castration-resistant and MDV3100-resistant prostate cancer growth in vitro and in vivo. Mol Cancer Ther. 2013;12:567–76.

    Article  CAS  PubMed  Google Scholar 

  27. Pan A, Sun XM, Huang FQ, Liu JF, Cai YY, Wu X, et al. The mitochondrial beta-oxidation enzyme HADHA restrains hepatic glucagon response by promoting beta-hydroxybutyrate production. Nat Commun. 2022;13:386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qu F, Gu Y, Xue M, He M, Zhou F, Wang G, et al. Impact of therapy on cancer metabolism in high-risk localized prostate cancer treated with neoadjuvant docetaxel and androgen deprivation therapy. Prostate 2021;81:560–71.

    Article  CAS  PubMed  Google Scholar 

  29. Sun P, Liu Y, Ma T, Ding J. Structure and allosteric regulation of human NAD-dependent isocitrate dehydrogenase. Cell Disco. 2020;6:94.

    Article  CAS  Google Scholar 

  30. Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl. 2014;16:378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pisano C, Tucci M, Di Stefano RF, Turco F, Scagliotti GV, Di Maio M, et al. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Crit Rev Oncol Hematol. 2021;157:103185.

    Article  PubMed  Google Scholar 

  32. Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA. 2002;99:13571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002;16:1472–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Handle F, Prekovic S, Helsen C, Van den Broeck T, Smeets E, Moris L, et al. Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. Sci Rep. 2019;9:13786.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29:946–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blanchet E, Annicotte JS, Lagarrigue S, Aguilar V, Clape C, Chavey C, et al. E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol. 2011;13:1146–52.

    Article  CAS  PubMed  Google Scholar 

  37. Liao Y, Du W. Rb-independent E2F3 promotes cell proliferation and alters expression of genes involved in metabolism and inflammation. FEBS Open Bio. 2017;7:1611–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vakifahmetoglu-Norberg H, Kim M, Xia HG, Iwanicki MP, Ofengeim D, Coloff JL, et al. Chaperone-mediated autophagy degrades mutant p53. Genes Dev. 2013;27:1718–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 2018;174:758–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xia HG, Najafov A, Geng J, Galan-Acosta L, Han X, Guo Y, et al. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol. 2015;210:705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl J Med. 2012;367:1187–97.

    Article  CAS  PubMed  Google Scholar 

  42. Chi K, Hotte SJ, Joshua AM, North S, Wyatt AW, Collins LL, et al. Treatment of mCRPC in the AR-axis-targeted therapy-resistant state. Ann Oncol. 2015;26:2044–56.

    Article  CAS  PubMed  Google Scholar 

  43. Saxena N, Beraldi E, Fazli L, Somasekharan SP, Adomat H, Zhang F, et al. Androgen receptor (AR) antagonism triggers acute succinate-mediated adaptive responses to reactivate AR signaling. EMBO Mol Med. 2021;13:e13427.

  44. Burgio SL, Fabbri F, Seymour IJ, Zoli W, Amadori D, De Giorgi U. Perspectives on mTOR inhibitors for castration-refractory prostate cancer. Curr Cancer Drug Targets. 2012;12:940–9.

    Article  CAS  PubMed  Google Scholar 

  45. Bitting RL, Armstrong AJ. Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer. 2013;20:R83–99.

    Article  CAS  PubMed  Google Scholar 

  46. Ye R, Pi M, Nooh MM, Bahout SW, Quarles LD. Human GPRC6A mediates testosterone-induced mitogen-activated protein kinases and mTORC1 signaling in prostate cancer cells. Mol Pharm. 2019;95:563–72.

    Article  Google Scholar 

  47. Verma S, Shankar E, Chan ER, Gupta S. Metabolic reprogramming and predominance of solute carrier genes during acquired enzalutamide resistance in prostate cancer. Cells. 2020;9:2535.

  48. Kushwaha PP, Verma SS, Shankar E, Lin S, Gupta S. Role of solute carrier transporters SLC25A17 and SLC27A6 in acquired resistance to enzalutamide in castration-resistant prostate cancer. Mol Carcinog. 2022;61:397–407.

    Article  CAS  PubMed  Google Scholar 

  49. Li W, Yang Q, Mao Z. Chaperone-mediated autophagy: Machinery, regulation and biological consequences. Cell Mol Life Sci. 2011;68:749–63.

    Article  CAS  PubMed  Google Scholar 

  50. Shao Y, Ye G, Ren S, Piao HL, Zhao X, Lu X, et al. Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer. Int J Cancer. 2018;143:396–407.

    Article  CAS  PubMed  Google Scholar 

  51. Fregeau-Proulx L, Lacouture A, Berthiaume L, Weidmann C, Harvey M, Gonthier K, et al. Multiple metabolic pathways fuel the truncated tricarboxylic acid cycle of the prostate to sustain constant citrate production and secretion. Mol Metab. 2022;62:101516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vaupel P, Schmidberger H, Mayer A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95:912–9.

    Article  CAS  PubMed  Google Scholar 

  53. Srihari S, Kwong R, Tran K, Simpson R, Tattam P, Smith E. Metabolic deregulation in prostate cancer. Mol Omics. 2018;14:320–9.

    Article  CAS  PubMed  Google Scholar 

  54. Giunchi F, Fiorentino M, Loda M. The metabolic landscape of prostate cancer. Eur Urol Oncol. 2019;2:28–36.

    Article  PubMed  Google Scholar 

  55. Barfeld SJ, Itkonen HM, Urbanucci A, Mills IG. Androgen-regulated metabolism and biosynthesis in prostate cancer. Endocr Relat Cancer. 2014;21:T57–66.

    Article  PubMed  Google Scholar 

  56. Annala M, Vandekerkhove G, Khalaf D, Taavitsainen S, Beja K, Warner EW, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Disco. 2018;8:444–57.

    Article  CAS  Google Scholar 

  57. Pawson T, Scott JD. Protein phosphorylation in signaling–50 years and counting. Trends Biochem Sci. 2005;30:286–90.

    Article  CAS  PubMed  Google Scholar 

  58. Al Nakouzi N, Le Moulec S, Albiges L, Wang C, Beuzeboc P, Gross-Goupil M, et al. Cabazitaxel remains active in patients progressing after docetaxel followed by novel androgen receptor pathway targeted therapies. Eur Urol. 2015;68:228–35.

    Article  CAS  PubMed  Google Scholar 

  59. Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res. 2005;65:11083–93.

    Article  CAS  PubMed  Google Scholar 

  60. Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 2014;74:1272–83.

    Article  CAS  PubMed  Google Scholar 

  61. Nikesitch N, Tao C, Lai K, Killingsworth M, Bae S, Wang M, et al. Predicting the response of multiple myeloma to the proteasome inhibitor Bortezomib by evaluation of the unfolded protein response. Blood Cancer J. 2016;6:e432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  63. Koga H, Martinez-Vicente M, Macian F, Verkhusha VV, Cuervo AM. A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nat Commun. 2011;2:386.

    Article  PubMed  Google Scholar 

  64. Arias E. Methods to study chaperone-mediated autophagy. Methods Enzymol. 2017;588:283–305.

    Article  CAS  PubMed  Google Scholar 

  65. Overton WR. Modified histogram subtraction technique for analysis of flow cytometry data. Cytometry 1988;9:619–26.

    Article  CAS  PubMed  Google Scholar 

  66. Hughes CS, Moggridge S, Muller T, Sorensen PH, Morin GB, Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc. 2019;14:68–85.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kramer A, Green J, Pollard J Jr., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 2014;30:523–30.

    Article  PubMed  Google Scholar 

  69. Otasek D, Morris JH, Boucas J, Pico AR, Demchak B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019;20:185.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D12.

    Article  CAS  PubMed  Google Scholar 

  71. Leung S, Miyake H, Zellweger T, Tolcher A, Gleave ME. Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bcl-2 oligodeoxynucleotide and paclitaxel in the LNCaP prostate tumor model. Int J Cancer. 2001;91:846–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

MG acknowledge Terry Fox New Frontiers Program Project (1062) for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

NN and MG conceived the idea and developed the project. NN designed and conducted the experiments, analyzed the data, discussed, and co-wrote the manuscript; NN, EB, FZ, HA, KS, LF, SK, CW, NP, and NS performed experiments; LF scored the TMAs; and MG led the research program, discussed the data, and co-wrote the manuscript.

Corresponding author

Correspondence to Martin Gleave.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikesitch, N., Beraldi, E., Zhang, F. et al. Chaperone-mediated autophagy promotes PCa survival during ARPI through selective proteome remodeling. Oncogene 42, 748–758 (2023). https://doi.org/10.1038/s41388-022-02573-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02573-7

This article is cited by

Search

Quick links