Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib

Abstract

SLP2, a protein located on mitochondrial, has been shown to be associated with mitochondrial biosynthesis. Here we explored the potential mechanisms by which SLP2 regulates the development of hepatocellular carcinoma. SLP2 could bind to the c-terminal of JNK2 to affect the ubiquitinated proteasomal degradation pathway of JNK2 and maintain the protein stability of JNK2. The increase of JNK2 markedly increases SREBP1 activity, promoting SREBP1 translocation into the nucleus to promote de novo lipogenesis. Alteration of the JNK2 C-terminal disables SLP2 from mediating SLP2-enhanced de novo lipogenesis. YTHDF1 interacts with SLP2 mRNA in a METTL3/m6A-dependent manner. In a spontaneous HCC animal model, SLP2/c-Myc/sgP53 increases the incidence rate of spontaneous HCC, tumor volume, and tumor number. Importantly, statistical analyses show that levels of SLP2 correlate with tumor sizes, tumor metastasis, overall survival, and disease-free survival of the patients. Targeting the SLP2/SREBP1 pathway effectively inhibits proliferation and metastasis of HCC tumors with high SLP2 expression in vivo combined with lenvatinib. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic SLP2, providing a mechanistic link between de novo lipogenesis and HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SLP2 is frequently upregulated in HCC and is a promising prognostic biomarker for HCC.
Fig. 2: SLP2 enhances HCC cell proliferation, migration, and invasion in vivo and in vitro.
Fig. 3: SLP2 could affect tumor progression through lipid metabolism.
Fig. 4: SLP2 could interact with the C-terminus of JNK2.
Fig. 5: SLP2 could maintain the protein stability of JNK2 and regulate SREBP1-mediated lipid metabolism through JNK2.
Fig. 6: SLP2 and JNK2 together promote the translocation of mature SREBP1 to the nucleus.
Fig. 7: Expression of SLP2 is regulated by METTL3 and YTHDF1.
Fig. 8: Targeting the SLP2/SREBP1 pathway effectively inhibits proliferation and metastasis of HCC tumors with high SLP2 expression in vivo.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The relevant mRNA databases can be found at the following sites. https://doi.org/10.6084/m9.figshare.20087705.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clinicians. 2021;71:7–33.

    Article  Google Scholar 

  2. Rich NE, Yopp AC, Singal AG. Medical management of hepatocellular carcinoma. J Oncol Pract. 2017;13:356–64.

    Article  Google Scholar 

  3. Chen Q, Shu C, Laurence AD, Chen Y, Peng BG, Zhen ZJ, et al. Effect of Huaier granule on recurrence after curative resection of HCC: a multicentre, randomised clinical trial. Gut. 2018;67:2006–16.

    Article  CAS  Google Scholar 

  4. Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol. 2021;18:112–27.

    Article  CAS  Google Scholar 

  5. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Sci (N. Y, NY). 2020;368:eaaw5473.

    Article  CAS  Google Scholar 

  6. Wang M, Han J, Xing H, Zhang H, Li Z, Liang L, et al. Dysregulated fatty acid metabolism in hepatocellular carcinoma. Hepatic Oncol. 2016;3:241–51.

    Article  Google Scholar 

  7. Li J, Huang Q, Long X, Zhang J, Huang X, Aa J, et al. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARα pathways. J Hepatol. 2015;63:1378–89.

    Article  CAS  Google Scholar 

  8. Alannan M, Fayyad-Kazan H, Trézéguet V, Merched A. Targeting lipid metabolism in liver cancer. Biochemistry. 2020;59:3951–64.

    Article  CAS  Google Scholar 

  9. Nguyen P, Leray V, Diez M, Serisier S, Le Bloc’h J, Siliart B, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr. 2008;92:272–83.

    Article  CAS  Google Scholar 

  10. Hall Z, Chiarugi D, Charidemou E, Leslie J, Scott E, Pellegrinet L, et al. Lipid remodeling in hepatocyte proliferation and hepatocellular carcinoma. Hepatol (Baltim, Md). 2021;73:1028–44.

    Article  CAS  Google Scholar 

  11. Wang MD, Wu H, Fu GB, Zhang HL, Zhou X, Tang L, et al. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatol (Baltim, Md). 2016;63:1272–86.

    Article  CAS  Google Scholar 

  12. Mitsopoulos P, Chang YH, Wai T, König T, Dunn SD, Langer T, et al. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol Cell Biol. 2015;35:1838–47.

    Article  CAS  Google Scholar 

  13. Christie DA, Mitsopoulos P, Blagih J, Dunn SD, St-Pierre J, Jones RG, et al. Stomatin-like protein 2 deficiency in T cells is associated with altered mitochondrial respiration and defective CD4+ T cell responses. J Immunol (Baltim, Md: 1950). 2012;189:4349–60.

    Article  CAS  Google Scholar 

  14. Wang Y, Morrow JS. Identification and characterization of human SLP-2, a novel homologue of stomatin (band 7.2b) present in erythrocytes and other tissues. J Biol Chem. 2000;275:8062–71.

    Article  CAS  Google Scholar 

  15. Lapatsina L, Brand J, Poole K, Daumke O, Lewin GR. Stomatin-domain proteins. Eur J cell Biol. 2012;91:240–5.

    Article  CAS  Google Scholar 

  16. Chang D, Ma K, Gong M, Cui Y, Liu ZH, Zhou XG, et al. SLP-2 overexpression is associated with tumour distant metastasis and poor prognosis in pulmonary squamous cell carcinoma. Biomarkers Biochemical Indic Exposure, Response, Susceptibility Chem. 2010;15:104–10.

    CAS  Google Scholar 

  17. Feng Q, Hu ZY, Liu XQ, Zhang X, Lan X, Geng YQ, et al. Stomatin-like protein 2 is involved in endometrial stromal cell proliferation and differentiation during decidualization in mice and humans. Reprod Biomed Online. 2017;34:191–202.

    Article  CAS  Google Scholar 

  18. Zhu W, Li W, Geng Q, Wang X, Sun W, Jiang H, et al. Silence of stomatin-like protein 2 represses migration and invasion ability of human liver cancer cells via inhibiting the nuclear factor kappa B (NF-κB) pathway. Med Sci Monit Int Med J Exp Clin Res. 2018;24:7625–32.

    CAS  Google Scholar 

  19. Luo A, Kong J, Hu G, Liew CC, Xiong M, Wang X, et al. Discovery of Ca2+-relevant and differentiation-associated genes downregulated in esophageal squamous cell carcinoma using cDNA microarray. Oncogene. 2004;23:1291–9.

    Article  CAS  Google Scholar 

  20. Ma W, Chen Y, Xiong W, Li W, Xu Z, Wang Y, et al. STOML2 interacts with PHB through activating MAPK signaling pathway to promote colorectal Cancer proliferation. J Exp Clin Cancer Res CR. 2021;40:359.

    Article  CAS  Google Scholar 

  21. Ma W, Xu Z, Wang Y, Li W, Wei Z, Chen T, et al. A positive feedback loop of SLP2 activates MAPK signaling pathway to promote gastric cancer progression. Theranostics. 2018;8:5744–57.

    Article  CAS  Google Scholar 

  22. Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol. 2021;14:16.

    Article  CAS  Google Scholar 

  23. Song L, Liu L, Wu Z, Lin C, Dai T, Yu C, et al. Knockdown of stomatin-like protein 2 (STOML2) reduces the invasive ability of glioma cells through inhibition of the NF-κB/MMP-9 pathway. J Pathol. 2012;226:534–43.

    Article  CAS  Google Scholar 

  24. Ito M, Nagasawa M, Omae N, Tsunoda M, Ishiyama J, Ide T, et al. A novel JNK2/SREBP-1c pathway involved in insulin-induced fatty acid synthesis in human adipocytes. J lipid Res. 2013;54:1531–40.

    Article  CAS  Google Scholar 

  25. Chao D, Ariake K, Sato S, Ohtsuka H, Takadate T, Ishida M, et al. Stomatin‑like protein 2 induces metastasis by regulating the expression of a rate‑limiting enzyme of the hexosamine biosynthetic pathway in pancreatic cancer. Oncol Rep. 2021;45:90.

    Article  CAS  Google Scholar 

  26. Wang Y, Cao W, Yu Z, Liu Z. Downregulation of a mitochondria associated protein SLP-2 inhibits tumor cell motility, proliferation and enhances cell sensitivity to chemotherapeutic reagents. Cancer Biol Ther. 2009;8:1651–8.

    Article  CAS  Google Scholar 

  27. Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK signaling pathway in inflammatory skin disorders and cancer. Cells. 2020;9:857.

    Article  CAS  Google Scholar 

  28. Kumar A, Singh UK, Kini SG, Garg V, Agrawal S, Tomar PK, et al. JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med Chem. 2015;7:2065–86.

    Article  CAS  Google Scholar 

  29. Hao Q, Liu Z, Lu L, Zhang L, Zuo L. Both JNK1 and JNK2 are indispensable for sensitized extracellular matrix mineralization in IKKβ-deficient osteoblasts. Front Endocrinol. 2020;11:13.

    Article  Google Scholar 

  30. Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M. Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. Cancer Cell. 2010;17:89–97.

    Article  CAS  Google Scholar 

  31. Chen YT, Lin CW, Su CW, Yang WE, Chuang CY, Su SC, et al. Magnolol triggers caspase-mediated apoptotic cell death in human oral cancer cells through JNK1/2 and p38 pathways. Biomedicines. 2021;9:1295.

    Article  CAS  Google Scholar 

  32. Lepore A, Choy PM, Lee NCW, Carella MA, Favicchio R, Briones-Orta MA, et al. Phosphorylation and stabilization of PIN1 by JNK promote intrahepatic cholangiocarcinoma growth. Hepatol (Baltim, Md). 2021;74:2561–79.

    Article  CAS  Google Scholar 

  33. Pu X, Dong C, Zhu W, Li W, Jiang H. Silencing stomatin-like protein 2 attenuates tumor progression and inflammatory response through repressing CD14 in liver cancer. OncoTargets Ther. 2019;12:7361–73.

    Article  CAS  Google Scholar 

  34. Jones JE, Esler WP, Patel R, Lanba A, Vera NB, Pfefferkorn JA, et al. Clinical Significance of SLP-2 in Hepatocellular Carcinoma Tissues and Its Regulation in Cancer Cell Proliferation, Migration, and EMT [Retraction]. OncoTargets Ther. 2022;15:869–70.

    Article  Google Scholar 

  35. Wang L, Zhang X, Lin ZB, Yang PJ, Xu H, Duan JL, et al. Tripartite motif 16 ameliorates nonalcoholic steatohepatitis by promoting the degradation of phospho-TAK1. Cell Metab. 2021;33:1372–88.e7.

    Article  CAS  Google Scholar 

  36. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47.

    Article  CAS  Google Scholar 

  37. Jones JE, Esler WP, Patel R, Lanba A, Vera NB, Pfefferkorn JA, et al. Inhibition of Acetyl-CoA Carboxylase 1 (ACC1) and 2 (ACC2) reduces proliferation and de novo lipogenesis of EGFRvIII human glioblastoma cells. PloS one. 2017;12:e0169566.

    Article  Google Scholar 

  38. Simeone P, Tacconi S, Longo S, Lanuti P, Bravaccini S, Pirini F, et al. Expanding roles of de novo lipogenesis in breast cancer. Int J Environ Res Public Health. 2021;18:3575.

    Article  CAS  Google Scholar 

  39. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22.

    Article  CAS  Google Scholar 

  40. Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 2010;70:8117–26.

    Article  CAS  Google Scholar 

  41. Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol. 2009;29:1411–20.

    Article  CAS  Google Scholar 

  42. Basingab FS, Ahmadi M, Morgan DJ. IFNγ-Dependent Interactions between ICAM-1 and LFA-1 Counteract Prostaglandin E2-Mediated Inhibition of Antitumor CTL Responses. Cancer Immunol Res. 2016;4:400–11.

    Article  CAS  Google Scholar 

  43. Zhang N, Zhang H, Liu Y, Su P, Zhang J, Wang X, et al. SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2. Cell Death Differ. 2019;26:843–59.

    Article  CAS  Google Scholar 

  44. Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Qingsong Hu for his valuable daily discussions. We thank OEbiotech company for the technical support of RNAseq and mass spectrometry analysis.

Funding

This study was supported by the National Key R&D Program of China (grant no. 2019YFA0709300 and 2019YFC1605001), the National Natural Science Foundation of China (grant no. 81772588, U19A2008, 81972307, 82103219, 82102705, and 81773194), China Postdoctoral Science Foundation (2020M671911, 2020TQ0313, 2020M682023), and the Natural Science Foundation of Anhui Province (2008085QH376). Youth Innovation Key Fund Project of USTC (WK9110000153-2020,YD9100002003-2019).

Author information

Authors and Affiliations

Authors

Contributions

YL: formal analysis, investigation, methodology, writing – original draft. LS: investigation, data curation. HG: methodology, validation. SZ: investigation. WC: methodology, visualization. CJ: formal analysis, software. FM: methodology, validation. SL: methodology. BZ: data curation. YY: data curation. KM: validation, XL: validation, TC: validation; XG: formal analysis; NZ: formal analysis; JW: supervision; YL: writing– review & editing, methodology; LL: funding acquisition, conceptualization.

Corresponding authors

Correspondence to Jiabei Wang, Yao Liu or Lianxin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Sun, L., Guo, H. et al. Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib. Oncogene 42, 374–388 (2023). https://doi.org/10.1038/s41388-022-02551-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02551-z

This article is cited by

Search

Quick links