Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long non-coding RNA TILR constitutively represses TP53 and apoptosis in lung cancer

Abstract

Non-coding RNAs have an integral regulatory role in numerous functions related to lung cancer development. Here, we report identification of a novel lncRNA, termed TP53-inhibiting lncRNA (TILR), which was found to function as a constitutive negative regulator of p53 expression, including activation of downstream genes such as p21 and MDM2, and induction of apoptosis. A proteomic search for TILR-associated proteins revealed an association with PCBP2, while the mid-portion of TILR was found to be required for both PCBP2 and p53 mRNA binding. In addition, depletion of PCBP2 resulted in phenocopied effects of TILR silencing. TILR was also shown to suppress p53 expression in a post-transcriptional manner, as well as via a positive feedback loop involving p53 and Fanconi anemia pathway genes. Taken together, the present findings clearly demonstrate that TILR constitutively inhibits p53 expression in cooperation with PCBP2, thus maintaining p53 transcriptional activity at a level sufficiently low for avoidance of spurious apoptosis induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of TP53-inhibiting lncRNA (TILR).
Fig. 2: TILR suppresses p53 transcriptional activity.
Fig. 3: PCBP2 associates with TILR.
Fig. 4: PCBP2 represses p53 transcriptional response.
Fig. 5: TILR and PCBP2 control p53 translation.
Fig. 6: TILR suppresses p53 protein stability and ubiquitination.
Fig. 7: TILR regulates Fanconi anemia pathway to suppress p53 protein.

Similar content being viewed by others

Data availability

The microarray data generated in this study have been deposited in the NCBI Gene Expression Omnibus database under the accession code GSE180940 and GSE180944.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  2. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, et al. p53: a frequent target for genetic abnormalities in lung cancer. Science. 1989;246:491–4.

    Article  CAS  Google Scholar 

  3. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  4. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70.

    Article  CAS  Google Scholar 

  5. Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer. 2019;19:495–509.

    Article  CAS  Google Scholar 

  6. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170:1062–78.

    Article  CAS  Google Scholar 

  7. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–6.

    Article  CAS  Google Scholar 

  8. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65:9628–32.

    Article  CAS  Google Scholar 

  9. Zhang Y, Pitchiaya S, Cieslik M, Niknafs YS, Tien JC, Hosono Y, et al. Analysis of the androgen receptor-regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat Genet. 2018;50:814–24.

    Article  CAS  Google Scholar 

  10. Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, et al. Promoter of lncRNA Gene PVT1 is a tumor-suppressor DNA boundary element. Cell. 2018;173:1398–412.e22.

    Article  CAS  Google Scholar 

  11. Long Y, Hwang T, Gooding AR, Goodrich KJ, Rinn JL, Cech TR. RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat Genet. 2020;52:931–8.

    Article  CAS  Google Scholar 

  12. Kajino T, Shimamura T, Gong S, Yanagisawa K, Ida L, Nakatochi M, et al. Divergent lncRNA MYMLR regulates MYC by eliciting DNA looping and promoter-enhancer interaction. EMBO J. 2019;38:e98441.

    Article  Google Scholar 

  13. Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D. The UCSC known genes. Bioinformatics. 2006;22:1036–46.

    Article  CAS  Google Scholar 

  14. Takeuchi T, Tomida S, Yatabe Y, Kosaka T, Osada H, Yanagisawa K, et al. Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. J Clin Oncol. 2006;24:1679–88.

    Article  CAS  Google Scholar 

  15. Tomida S, Takeuchi T, Shimada Y, Arima C, Matsuo K, Mitsudomi T, et al. Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. J Clin Oncol. 2009;27:2793–9.

    Article  CAS  Google Scholar 

  16. Catherman AD, Li M, Tran JC, Durbin KR, Compton PD, Early BP, et al. Top-down proteomics of human membrane proteins from enriched mitochondrial fractions. Anal Chem. 2013;85:1880–8.

    Article  CAS  Google Scholar 

  17. Chen Y, Li Y, Zhong J, Zhang J, Chen Z, Yang L, et al. Identification of missing proteins defined by chromosome-centric proteome project in the cytoplasmic detergent-insoluble proteins. J Proteome Res. 2015;14:3693–709.

    Article  CAS  Google Scholar 

  18. Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179:1033–55.

    Article  CAS  Google Scholar 

  19. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

    Article  CAS  Google Scholar 

  20. Niraj J, Farkkila A, D’Andrea AD. The Fanconi anemia pathway in cancer. Annu Rev Cancer Biol. 2019;3:457–78.

    Article  Google Scholar 

  21. Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer. 2018;18:168–85.

    Article  CAS  Google Scholar 

  22. Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, Regairaz M, et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell. 2012;11:36–49.

    Article  CAS  Google Scholar 

  23. Ceccaldi R, Briot D, Larghero J, Vasquez N, Dubois d’Enghien C, Chamousset D, et al. Spontaneous abrogation of the G(2)DNA damage checkpoint has clinical benefits but promotes leukemogenesis in Fanconi anemia patients. J Clin Invest. 2011;121:184–94.

    Article  CAS  Google Scholar 

  24. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387:299–303.

    Article  CAS  Google Scholar 

  25. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–34.

    Article  CAS  Google Scholar 

  26. Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer. 2004;4:793–805.

    Article  CAS  Google Scholar 

  27. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008;133:612–26.

    Article  CAS  Google Scholar 

  28. Mazan-Mamczarz K, Galban S, Lopez de Silanes I, Martindale JL, Atasoy U, Keene JD, et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci USA. 2003;100:8354–9.

    Article  CAS  Google Scholar 

  29. Wedeken L, Singh P, Klempnauer KH. Tumor suppressor protein Pdcd4 inhibits translation of p53 mRNA. J Biol Chem. 2011;286:42855–62.

    Article  CAS  Google Scholar 

  30. Jaber S, Toufektchan E, Lejour V, Bardot B, Toledo F. p53 downregulates the Fanconi anaemia DNA repair pathway. Nat Commun. 2016;7:11091.

    Article  CAS  Google Scholar 

  31. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016;22:861–8.

    Article  CAS  Google Scholar 

  32. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282:24731–42.

    Article  CAS  Google Scholar 

  33. Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun. 2018;9:29.

    Article  Google Scholar 

  34. Choi HS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem Biophys Res Commun. 2009;380:431–6.

    Article  CAS  Google Scholar 

  35. Ebi H, Tomida S, Takeuchi T, Arima C, Sato T, Mitsudomi T, et al. Relationship of deregulated signaling converging onto mTOR with prognosis and classification of lung adenocarcinoma shown by two independent in silico analyses. Cancer Res. 2009;69:4027–35.

    Article  CAS  Google Scholar 

  36. Arima C, Kajino T, Tamada Y, Imoto S, Shimada Y, Nakatochi M, et al. Lung adenocarcinoma subtypes definable by lung development-related miRNA expression profiles in association with clinicopathologic features. Carcinogenesis. 2014;35:2224–31.

    Article  CAS  Google Scholar 

  37. Tanaka H, Yanagisawa K, Shinjo K, Taguchi A, Maeno K, Tomida S, et al. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res. 2007;67:6007–11.

    Article  CAS  Google Scholar 

  38. Stein CS, Jadiya P, Zhang X, McLendon JM, Abouassaly GM, Witmer NH, et al. Mitoregulin: A lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency. Cell Rep. 2018;23:3710–20.e8.

    Article  CAS  Google Scholar 

  39. Lin Y, Nakatochi M, Hosono Y, Ito H, Kamatani Y, Inoko A, et al. Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat Commun. 2020;11:3175.

    Article  CAS  Google Scholar 

  40. Feng Y, Absher D, Eberhart DE, Brown V, Malter HE, Warren ST. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol Cell. 1997;1:109–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Naoe Hotta and Keiko Kano for assistance with data collection, as well as Sebastian Griesing and Atsuko Niimi for the helpful discussion. This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Grants-in-Aid for Scientific Research (A) and (C) from the Japan Society for the Promotion of Science, Takeda Science Foundation, and a grant from the Princess Takamatsu Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

MI, TK, and TT conceived the project. MI, TK, KY, YH, HI, and YS performed the experiments. MI, TK, KY, MS, AT, and TT analyzed the data. TK and MN performed the informatics analysis. MI, TK, and TT wrote the paper, with input from all authors. TT supervised the project.

Corresponding author

Correspondence to Takashi Takahashi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwai, M., Kajino, T., Nakatochi, M. et al. Long non-coding RNA TILR constitutively represses TP53 and apoptosis in lung cancer. Oncogene 42, 364–373 (2023). https://doi.org/10.1038/s41388-022-02546-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02546-w

Search

Quick links