Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/ NF-κB pathway

Abstract

Circular RNAs (circRNAs) play important roles in the malignant progression of tumours. Herein, we identified an unreported circRNA (hsa-circ-0072688, also named circADAMTS6) that is specifically upregulated in the hypoxic microenvironment of glioblastoma and closely correlated with poor prognosis of gliblastoma patients. We found that circADAMTS6 promotes the malignant progression of glioblastoma by promoting cell proliferation and inhibiting apoptosis. Mechanistically, the hypoxic tumour microenvironment upregulates circADAMTS6 expression through transcription factor activator protein 1 (AP-1) and RNA-binding protein TAR DNA-binding protein 43 (TDP43). Moreover, circADAMTS6 accelerates glioblastoma progression by recruiting and stabilising annexin A2 (ANXA2) in a proteasomes-dependent manner. Furthermore, we found T-5224 (AP-1 inhibitor) treatment induces downregulation of circADAMTS6 and then inhibits tumour growth. In conclusion, our findings highlight the important role of the circADAMTS6/ANXA2 axis based on hypoxic microenvironment in glioblastoma progression, as well as its regulation in NF-κB pathway. Targeting circADAMTS6 is thus expected to become a novel therapeutic strategy for glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CircADAMTS6 expression is upregulated in GBM cell lines, GSCs and GBM tissue samples.
Fig. 2: CircADAMTS6 promotes GBM growth in vitro and in vivo.
Fig. 3: Hypoxia transcriptionally upregulates circADAMTS6 expression via the AP-1 complex.
Fig. 4: Hypoxia accelerates the cyclization of circADAMTS6 by promoting the binding of TDP43 to introns of ADAMTS6 pre-mRNA.
Fig. 5: CircADAMTS6 affects ANXA2 stability by preventing its ubiquitination.
Fig. 6: CircADAMTS6 positively regulates the NF-κB pathway via ANXA2.
Fig. 7: The AP-1 inhibitor T-5224 blocks the biogenesis of circADAMTS6 in GBM.

Similar content being viewed by others

Data availability

The datasets used and analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro Oncol. 2021;23:iii1–iii105. https://doi.org/10.1093/neuonc/noab200

    Article  Google Scholar 

  2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23:1231–51. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  Google Scholar 

  3. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314:2535–43. https://doi.org/10.1001/jama.2015.16669

    Article  CAS  Google Scholar 

  4. Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1100–8. https://doi.org/10.1016/S1470-2045(14)70379-1

    Article  CAS  Google Scholar 

  5. Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and bevacizumab in progressive glioblastoma. N. Engl J Med. 2017;377:1954–63. https://doi.org/10.1056/NEJMoa1707358

    Article  CAS  Google Scholar 

  6. Reardon DA, Rich JN, Friedman HS, Bigner DD. Recent advances in the treatment of malignant astrocytoma. J Clin Oncol. 2006;24:1253–65. https://doi.org/10.1200/JCO.2005.04.5302

    Article  CAS  Google Scholar 

  7. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  Google Scholar 

  8. Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 2021;23:278–91. https://doi.org/10.1038/s41556-021-00639-4

    Article  CAS  Google Scholar 

  9. Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong J, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 2021;23:743–56. https://doi.org/10.1093/neuonc/noaa279

    Article  CAS  Google Scholar 

  10. Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, et al. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit gliomagenesis. Mol Cancer. 2020;19:138 https://doi.org/10.1186/s12943-020-01253-y

    Article  CAS  Google Scholar 

  11. Khan IN, Ullah N, Hussein D, Saini KS. Current and emerging biomarkers in tumors of the central nervous system: possible diagnostic, prognostic and therapeutic applications. Semin Cancer Biol. 2018;52:85–102. https://doi.org/10.1016/j.semcancer.2017.07.004

    Article  CAS  Google Scholar 

  12. Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21:475–90. https://doi.org/10.1038/s41580-020-0243-y

    Article  CAS  Google Scholar 

  13. Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther. 2021;6:78 https://doi.org/10.1038/s41392-021-00486-7

    Article  CAS  Google Scholar 

  14. Li S, Han L. Circular RNAs as promising biomarkers in cancer: detection, function, and beyond. Genome Med. 2019;11:15 https://doi.org/10.1186/s13073-019-0629-7

    Article  Google Scholar 

  15. Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer. 2019;18:6 https://doi.org/10.1186/s12943-018-0934-6

    Article  Google Scholar 

  16. Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer. 2021;21:22–36. https://doi.org/10.1038/s41568-020-00306-0

    Article  CAS  Google Scholar 

  17. Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, et al. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro Oncol. 2021;23:611–24. https://doi.org/10.1093/neuonc/noaa214

    Article  CAS  Google Scholar 

  18. Zhang S, Liao K, Miao Z, Wang Q, Miao Y, Guo Z, et al. CircFOXO3 promotes glioblastoma progression by acting as a competing endogenous RNA for NFAT5. Neuro Oncol. 2019;21:1284–96. https://doi.org/10.1093/neuonc/noz128

    Article  CAS  Google Scholar 

  19. Chen D, Chou FJ, Chen Y, Tian H, Wang Y, You B, et al. Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Lett. 2020;495:100–11. https://doi.org/10.1016/j.canlet.2020.07.040

    Article  CAS  Google Scholar 

  20. Shen S, Yang Y, Shen P, Ma J, Fang B, Wang Q, et al. circPDE4B prevents articular cartilage degeneration and promotes repair by acting as a scaffold for RIC8A and MID1. Ann Rheum Dis. 2021;80:1209–19. https://doi.org/10.1136/annrheumdis-2021-219969

    Article  CAS  Google Scholar 

  21. Chen J, Luo H, Liu Y, Zhang W, Li H, Luo T, et al. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano. 2017;11:12849–62. https://doi.org/10.1021/acsnano.7b08225.

    Article  CAS  Google Scholar 

  22. Man J, Yu X, Huang H, Zhou W, Xiang C, Huang H, et al. Hypoxic induction of vasorin regulates notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell. 2018;22:104–.e6. https://doi.org/10.1016/j.stem.2017.10.005

    Article  CAS  Google Scholar 

  23. Hsieh CH, Lin YJ, Wu CP, Lee HT, Shyu WC, Wang CC. Livin contributes to tumor hypoxia-induced resistance to cytotoxic therapies in glioblastoma multiforme. Clin Cancer Res. 2015;21:460–70. https://doi.org/10.1158/1078-0432.CCR-14-0618

    Article  CAS  Google Scholar 

  24. Hambardzumyan D, Bergers G. Glioblastoma: defining tumor niches. Trends Cancer. 2015;1:252–65. https://doi.org/10.1016/j.trecan.2015.10.009

    Article  Google Scholar 

  25. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–D92. https://doi.org/10.1093/nar/gkz1001

    Article  CAS  Google Scholar 

  26. Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13:34–42. https://doi.org/10.1080/15476286.2015.1128065

    Article  Google Scholar 

  27. Qiu W, Guo X, Li B, Wang J, Qi Y, Chen Z, et al. Exosomal miR-1246 from glioma patient body fluids drives the differentiation and activation of myeloid-derived suppressor cells. Mol Ther. 2021;29:3449–64. https://doi.org/10.1016/j.ymthe.2021.06.023

    Article  CAS  Google Scholar 

  28. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17:272–83. https://doi.org/10.1038/nrg.2016.20

    Article  CAS  Google Scholar 

  29. Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol. 2012;14:1314–21. https://doi.org/10.1038/ncb2611

    Article  CAS  Google Scholar 

  30. Sheu-Gruttadauria J, MacRae IJ. Phase transitions in the assembly and function of human miRISC. Cell. 2018;173:946–.e16. https://doi.org/10.1016/j.cell.2018.02.051

    Article  CAS  Google Scholar 

  31. Sablok G, Zhao H, Sun X. Plant circular RNAs (circRNAs): transcriptional regulation beyond miRNAs in plants. Mol Plant. 2016;9:192–4. https://doi.org/10.1016/j.molp.2015.12.021

    Article  CAS  Google Scholar 

  32. Huang S, Li X, Zheng H, Si X, Li B, Wei G, et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation. 2019;139:2857–76. https://doi.org/10.1161/CIRCULATIONAHA.118.038361

    Article  CAS  Google Scholar 

  33. Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 2021;12:911–46. https://doi.org/10.1007/s13238-020-00799-3

    Article  CAS  Google Scholar 

  34. Niu Y, Lin Z, Wan A, Sun L, Yan S, Liang H, et al. Loss-of-function genetic screening identifies aldolase A as an essential driver for liver cancer cell growth under hypoxia. Hepatology. 2021;74:1461–79. https://doi.org/10.1002/hep.31846

    Article  CAS  Google Scholar 

  35. Ni J, Wang X, Stojanovic A, Zhang Q, Wincher M, Bühler L, et al. Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α Unleashes NK Cell Activity. Immunity. 2020;52:1075–.e8. https://doi.org/10.1016/j.immuni.2020.05.001

    Article  CAS  Google Scholar 

  36. Li L, Yang L, Fan Z, Xue W, Shen Z, Yuan Y, et al. Hypoxia-induced GBE1 expression promotes tumor progression through metabolic reprogramming in lung adenocarcinoma. Signal Transduct Target Ther. 2020;5:54 https://doi.org/10.1038/s41392-020-0152-8

    Article  CAS  Google Scholar 

  37. Wilson GK, Tennant DA, McKeating JA. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J Hepatol. 2014;61:1397–406. https://doi.org/10.1016/j.jhep.2014.08.025

    Article  CAS  Google Scholar 

  38. Zhang P, Zhang XO, Jiang T, Cai L, Huang X, Liu Q, et al. Comprehensive identification of alternative back-splicing in human tissue transcriptomes. Nucleic Acids Res. 2020;48:1779–89. https://doi.org/10.1093/nar/gkaa005

    Article  CAS  Google Scholar 

  39. Qing G, Lu Q, Xiong Y, Zhang L, Wang H, Li X, et al. New opportunities and challenges of smart polymers in post-translational modification proteomics. Adv Mater. 2017;29. https://doi.org/10.1002/adma.201604670.

  40. Liu J, Qian C, Cao X. Post-translational modification control of innate immunity. Immunity. 2016;45:15–30. https://doi.org/10.1016/j.immuni.2016.06.020

    Article  CAS  Google Scholar 

  41. Vucic D, Dixit VM, Wertz IE. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol. 2011;12:439–52. https://doi.org/10.1038/nrm3143

    Article  CAS  Google Scholar 

  42. Wei WS, Chen X, Guo LY, Li XD, Deng MH, Yuan GJ, et al. TRIM65 supports bladder urothelial carcinoma cell aggressiveness by promoting ANXA2 ubiquitination and degradation. Cancer Lett. 2018;435:10–22. https://doi.org/10.1016/j.canlet.2018.07.036

    Article  CAS  Google Scholar 

  43. Deng S, Jing B, Xing T, Hou L, Yang Z. Overexpression of annexin A2 is associated with abnormal ubiquitination in breast cancer. Genomics Proteom Bioinform. 2012;10:153–7. https://doi.org/10.1016/j.gpb.2011.12.001

    Article  CAS  Google Scholar 

  44. Tu Y, Xie P, Du X, Fan L, Bao Z, Sun G, et al. S100A11 functions as novel oncogene in glioblastoma via S100A11/ANXA2/NF-κB positive feedback loop. J Cell Mol Med. 2019;23:6907–18. https://doi.org/10.1111/jcmm.14574

    Article  CAS  Google Scholar 

  45. Wang YS, Li H, Li Y, Zhu H, Jin YH. Identification of natural compounds targeting Annexin A2 with an anti-cancer effect. Protein Cell. 2018;9:568–79. https://doi.org/10.1007/s13238-018-0513-z

    Article  CAS  Google Scholar 

  46. Kpetemey M, Dasgupta S, Rajendiran S, Das S, Gibbs LD, Shetty P, et al. MIEN1, a novel interactor of Annexin A2, promotes tumor cell migration by enhancing AnxA2 cell surface expression. Mol Cancer. 2015;14:156 https://doi.org/10.1186/s12943-015-0428-8

    Article  Google Scholar 

  47. Sarkar S, Swiercz R, Kantara C, Hajjar KA, Singh P. Annexin A2 mediates up-regulation of NF-κB, β-catenin, and stem cell in response to progastrin in mice and HEK-293 cells. Gastroenterology. 2011;140:583–.e4. https://doi.org/10.1053/j.gastro.2010.08.054

    Article  CAS  Google Scholar 

  48. Wang Y, Chen K, Cai Y, Cai Y, Yuan X, Wang L, et al. Annexin A2 could enhance multidrug resistance by regulating NF-κB signaling pathway in pediatric neuroblastoma. J Exp Clin Cancer Res. 2017;36:111 https://doi.org/10.1186/s13046-017-0581-6

    Article  CAS  Google Scholar 

  49. Liu R, Tan J, Shen X, Jiang K, Wang C, Zhu G, et al. Therapeutic targeting of FOS in mutant TERT cancers through removing TERT suppression of apoptosis via regulating survivin and TRAIL-R2. Proc Natl Acad Sci USA. 2021;118:e2022779118 https://doi.org/10.1073/pnas.2022779118

    Article  CAS  Google Scholar 

  50. Kamide D, Yamashita T, Araki K, Tomifuji M, Tanaka Y, Tanaka S, et al. Selective activator protein-1 inhibitor T-5224 prevents lymph node metastasis in an oral cancer model. Cancer Sci. 2016;107:666–73. https://doi.org/10.1111/cas.12914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Frederick F Lang and Dr. Krishna P.L. Bhat for providing GSC cell lines used in our study; and CGGA, TCGA, GEO, Granvendeel and Rembrandt for public sequence data. This work was supported by grants from the National Natural Science Foundation of China (Nos. 82273195; 81874083; 82072776; 82273286; 82072775; 82203419;), Natural Science Foundation of Shandong Province of China (Nos. ZR2019BH057;ZR2020QH174; ZR2021LSW025), the Jinan Science and Technology Bureau of Shandong Province (2021GXRC029), Key Clinical Research Project of Clinical Research Center of Shandong University (2020SDUCRCA011) and Taishan Pandeng Scholar Program of Shandong Province (No. tspd20210322).

Author information

Authors and Affiliations

Authors

Contributions

GL, HX and SZ conceived and devised the study; BL, RZ, ZP, SZ, WQ, QG, YQ, ZG, YF, HX, ML and JZ performed the experiments; HW, XJ, SW and QW performed bioinformatics and statistical analysis; JQ and LD analysed the data. XG and PZ supervised the research. SZ, BL and RZ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hao Xue or Gang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Li, B., Zhao, R. et al. Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/ NF-κB pathway. Oncogene 42, 138–153 (2023). https://doi.org/10.1038/s41388-022-02542-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02542-0

This article is cited by

Search

Quick links