Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AGO4 suppresses tumor growth by modulating autophagy and apoptosis via enhancing TRIM21-mediated ubiquitination of GRP78 in a p53-independent manner

Abstract

Argonaute proteins, which consist of AGO1, AGO2, AGO3 and AGO4, are key players in microRNA-mediated gene silencing. So far, few non-microRNA related biological roles of AGO4 have been reported. Here, we first found that AGO4 had low expression in non-small cell lung cancer (NSCLC) patient tumor tissues and could suppress NSCLC cell proliferation and metastasis. Subsequent studies on the mechanism showed that AGO4 could interact with the tripartite motif-containing protein 21 (TRIM21) and the glucose-regulated protein 78 (GRP78). AGO4 promoted ubiquitination of GRP78 by stabilizing TRIM21, a new specific ubiquitin E3 ligase for promoting K48-linked polyubiquitination of GRP78 confirmed in this paper, which resulted in induced cell apoptosis and inhibited autophagy by activating mTOR signal pathway. Further studies showed that p53 had dominant effects on TRIM21-GRP78 axis by directly increasing the expression of TRIM21 in p53 wild-type cells and AGO4 may alternatively regulate TRIM21-GRP78 axis in p53-deficient cells. We also found that overexpression of AGO4 results in suppression of multiple p53-deficient cell growth both in vivo and vitro. Together, we showed for the first time that the AGO4-TRIM21-GRP78 axis, as a new regulatory pathway, may be a novel potential therapeutic target for p53-deficient tumor treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression level of AGO4 in lung cancer.
Fig. 2: AGO4 suppresses NSCLC H1299 cell proliferation and metastasis.
Fig. 3: AGO4 suppresses autophagy by activating mTOR signaling and promotes NSCLC H1299 cell apoptosis.
Fig. 4: Identification of the interactions between AGO4, TRIM21 and GRP78.
Fig. 5: TRIM21 binds to GRP78 for K48-linked ubiquitination and proteasome-mediated degradation.
Fig. 6: AGO4 promotes ubiquitination of GRP78 through stabilizing TRIM21.
Fig. 7: AGO4 suppresses tumor growth of H1299 cells but not H460 cells in vivo.
Fig. 8: Activation of AGO4-TRIM21-GRP78 pathway is p53-independent.

Similar content being viewed by others

References

  1. Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol. 2008;9:22–32.

    Article  CAS  Google Scholar 

  2. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.

    Article  CAS  Google Scholar 

  3. Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14:447–59.

    Article  CAS  Google Scholar 

  4. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:185–97.

    Article  CAS  Google Scholar 

  5. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004;305:1437–41.

    Article  CAS  Google Scholar 

  6. Hauptmann J, Dueck A, Harlander S, Pfaff J, Merkl R, Meister G. Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat Struct Mol Biol. 2013;20:814–7.

    Article  CAS  Google Scholar 

  7. Hauptmann J, Kater L, Loffler P, Merkl R, Meister G. Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. RNA 2014;20:1532–8.

    Article  CAS  Google Scholar 

  8. Adiliaghdam F, Basavappa M, Saunders TL, Harjanto D, Prior JT, Cronkite DA, et al. A requirement for argonaute 4 in mammalian antiviral defense. Cell Rep. 2020;30:1690–701.e1694.

    Article  CAS  Google Scholar 

  9. Modzelewski AJ, Holmes RJ, Hilz S, Grimson A, Cohen PE. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell. 2012;23:251–64.

    Article  CAS  Google Scholar 

  10. Espinosa A, Dardalhon V, Brauner S, Ambrosi A, Higgs R, Quintana FJ, et al. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway. J Exp Med. 2009;206:1661–71.

    Article  CAS  Google Scholar 

  11. Kunishita Y, Yoshimi R, Kamiyama R, Kishimoto D, Yoshida K, Hashimoto E, et al. TRIM21 dysfunction enhances aberrant B-cell differentiation in autoimmune pathogenesis. Front Immunol. 2020;11:98.

    Article  CAS  Google Scholar 

  12. Wada K, Kamitani T. Autoantigen Ro52 is an E3 ubiquitin ligase. Biochem Biophys Res Commun. 2006;339:415–21.

    Article  CAS  Google Scholar 

  13. Higgs R, Ni Gabhann J, Ben Larbi N, Breen EP, Fitzgerald KA, Jefferies CA. The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol. 2008;181:1780–6.

    Article  CAS  Google Scholar 

  14. Lazzari E, Korczeniewska J, Ni Gabhann J, Smith S, Barnes BJ, Jefferies CA. TRIpartite motif 21 (TRIM21) differentially regulates the stability of interferon regulatory factor 5 (IRF5) isoforms. PLoS One. 2014;9:e103609.

    Article  Google Scholar 

  15. Higgs R, Lazzari E, Wynne C, Ni Gabhann J, Espinosa A, Wahren-Herlenius M, et al. Self protection from anti-viral responses-Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-Like receptors. PLoS One. 2010;5:e11776.

    Article  Google Scholar 

  16. Kong HJ, Anderson DE, Lee CH, Jang MK, Tamura T, Tailor P, et al. Cutting edge: autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages. J Immunol. 2007;179:26–30.

    Article  CAS  Google Scholar 

  17. Wada K, Kamitani T. UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem Biophys Res Commun. 2006;342:253–8.

    Article  CAS  Google Scholar 

  18. Yamauchi K, Wada K, Tanji K, Tanaka M, Kamitani T. Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its potential role. FEBS J. 2008;275:1540–55.

    Article  CAS  Google Scholar 

  19. Fletcher AJ, Mallery DL, Watkinson RE, Dickson CF, James LC. Sequential ubiquitination and deubiquitination enzymes synchronize the dual sensor and effector functions of TRIM21. Proc Natl Acad Sci USA. 2015;112:10014–9.

    Article  CAS  Google Scholar 

  20. Zhang Z, Bao M, Lu N, Weng L, Yuan B, Liu YJ. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat Immunol. 2013;14:172–8.

    Article  CAS  Google Scholar 

  21. Yang L, Jin L, Ke Y, Fan X, Zhang T, Zhang C, et al. E3 Ligase Trim21 ubiquitylates and stabilizes keratin 17 to induce STAT3 activation in psoriasis. J Invest Dermatol. 2018;138:2568–77.

    Article  CAS  Google Scholar 

  22. McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol. 2013;14:327–36.

    Article  CAS  Google Scholar 

  23. Alomari M. TRIM21 - a potential novel therapeutic target in cancer. Pharm Res. 2021;165:105443.

    Article  CAS  Google Scholar 

  24. Yang B, Wang J, Sun B. Trim21: a novel negative regulator in DNA sensor signaling. Cell Mol Immunol. 2013;10:190–2.

    Article  CAS  Google Scholar 

  25. Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: getting by with a little help from ERdj friends. J Biol Chem. 2019;294:2098–108.

    Article  CAS  Google Scholar 

  26. Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 2013;32:805–18.

    Article  CAS  Google Scholar 

  27. Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer. 2014;14:263–76.

    Article  CAS  Google Scholar 

  28. Chae YC, Caino MC, Lisanti S, Ghosh JC, Dohi T, Danial NN, et al. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell. 2012;22:331–44.

    Article  CAS  Google Scholar 

  29. Zhang LH, Zhang X. Roles of GRP78 in physiology and cancer. J Cell Biochem. 2010;110:1299–305.

    Article  CAS  Google Scholar 

  30. Du T, Li H, Fan Y, Yuan L, Guo X, Zhu Q, et al. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun. 2019;10:2914.

    Article  Google Scholar 

  31. Chang YW, Tseng CF, Wang MY, Chang WC, Lee CC, Chen LT, et al. Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene 2016;35:1517–28.

    Article  CAS  Google Scholar 

  32. Bailly C, Waring MJ. Pharmacological effectors of GRP78 chaperone in cancers. Biochem Pharm. 2019;163:269–78.

    Article  CAS  Google Scholar 

  33. Shen J, Ha DP, Zhu G, Rangel DF, Kobielak A, Gill PS, et al. GRP78 haploinsufficiency suppresses acinar-to-ductal metaplasia, signaling, and mutant Kras-driven pancreatic tumorigenesis in mice. Proc Natl Acad Sci USA. 2017;114:E4020–9.

    Article  CAS  Google Scholar 

  34. Kim SY, Kim HJ, Kim HJ, Kim DH, Han JH, Byeon HK, et al. HSPA5 negatively regulates lysosomal activity through ubiquitination of MUL1 in head and neck cancer. Autophagy 2018;14:385–403.

    Article  CAS  Google Scholar 

  35. Qian Y, Wong CC, Xu J, Chen H, Zhang Y, Kang W, et al. Sodium channel subunit SCNN1B suppresses gastric cancer growth and metastasis via GRP78 degradation. Cancer Res. 2017;77:1968–82.

    Article  CAS  Google Scholar 

  36. Singh SS, Vats S, Chia AY, Tan TZ, Deng S, Ong MS, et al. Dual role of autophagy in hallmarks of cancer. Oncogene 2018;37:1142–58.

    Article  CAS  Google Scholar 

  37. Wen X, Klionsky DJ. At a glance: a history of autophagy and cancer. Semin Cancer Biol. 2020;66:3–11.

    Article  Google Scholar 

  38. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12:1–222.

    Article  Google Scholar 

  39. Kim J, Kundu M, Viollet B, Guan KLAMPK. and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  Google Scholar 

  40. Kato H, Nakajima S, Saito Y, Takahashi S, Katoh R, Kitamura M. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ. 2012;19:310–20.

    Article  CAS  Google Scholar 

  41. Fu Y, Wang H, Dai H, Zhu Q, Cui CP, Sun X, et al. OTULIN allies with LUBAC to govern angiogenesis by editing ALK1 linear polyubiquitin. Mol Cell. 2021;81:3187–204.e3187.

    Article  CAS  Google Scholar 

  42. Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol. 2020;67:131–44.

    Article  CAS  Google Scholar 

  43. Zuo Y, Feng Q, Jin L, Huang F, Miao Y, Liu J, et al. Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling. Nat Commun. 2020;11:1146.

    Article  CAS  Google Scholar 

  44. Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20:199–210.

    Article  CAS  Google Scholar 

  45. Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell. 2017;170:1062–78.

    Article  CAS  Google Scholar 

  46. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    Article  CAS  Google Scholar 

  47. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.

    Article  CAS  Google Scholar 

  48. Xia S, Duan W, Liu W, Zhang X, Wang Q. GRP78 in lung cancer. J Transl Med. 2021;19:118.

    Article  CAS  Google Scholar 

  49. Casas C. GRP78 at the centre of the stage in cancer and neuroprotection. Front Neurosci. 2017;11:177.

    Article  Google Scholar 

  50. Farshbaf M, Khosroushahi AY, Mojarad-Jabali S, Zarebkohan A, Valizadeh H, Walker PR. Cell surface GRP78: an emerging imaging marker and therapeutic target for cancer. J Control Release. 2020;328:932–41.

    Article  CAS  Google Scholar 

  51. Madhavan S, Nagarajan S. GRP78 and next generation cancer hallmarks: an underexplored molecular target in cancer chemoprevention research. Biochimie 2020;175:69–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Xiansheng Lu for his help in linguistic revision.

Funding

This work was supported by the National Natural Science Foundation of China (3120566, 31370794) and the key R&D of the Ministry of Science and Technology of China (2016YFC1309604).

Author information

Authors and Affiliations

Authors

Contributions

NS, XL, and JD designed the project and planning and wrote the manuscript. LW, DL, and XS contributed equally to the experiment. YZ, AH, HL, JL, WX, TJ, and HZ provided the technical support.

Corresponding authors

Correspondence to Jie Dong, Xuemei Liu or Ningsheng Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, D., Su, X. et al. AGO4 suppresses tumor growth by modulating autophagy and apoptosis via enhancing TRIM21-mediated ubiquitination of GRP78 in a p53-independent manner. Oncogene 42, 62–77 (2023). https://doi.org/10.1038/s41388-022-02526-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02526-0

This article is cited by

Search

Quick links