Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A GRIP-1–EZH2 switch binding to GATA-4 is linked to the genesis of rhabdomyosarcoma through miR-29a

Abstract

Terminal differentiation failure is an important cause of rhabdomyosarcoma genesis, however, little is known about the epigenetic regulation of aberrant myogenic differentiation. Here, we show that GATA-4 recruits polycomb group proteins such as EZH2 to negatively regulate miR-29a in undifferentiated C2C12 myoblast cells, whereas recruitment of GRIP-1 to GATA-4 proteins displaces EZH2, resulting in the activation of miR-29a during myogenic differentiation of C2C12 cells. Moreover, in poorly differentiated rhabdomyosarcoma cells, EZH2 still binds to the miR-29a promoter with GATA-4 to mediate transcriptional repression of miR-29a. Interestingly, once re-differentiation of rhabdomyosarcoma cells toward skeletal muscle, EZH2 was dispelled from miR-29a promoter which is similar to that in myogenic differentiation of C2C12 cells. Eventually, this expression of miR-29a results in limited rhabdomyosarcoma cell proliferation and promotes myogenic differentiation. We thus establish that GATA-4 can function as a molecular switch in the up- and downregulation of miR-29a expression. We also demonstrate that GATA-4 acts as a tumor suppressor in rhabdomyosarcoma partly via miR-29a, which thus provides a potential therapeutic target for rhabdomyosarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GATA-4/polycomb group protein interactions mediate the repression of miR-29a.
Fig. 2: GATA-4 recruits GRIP-1 instead of EZH2 to the miR-29a promoter during myogenic differentiation.
Fig. 3: EZH2 binds the miR-29a promoter to mediate transcriptional repression in RMS.
Fig. 4: miR-29a promotes myogenic differentiation and inhibits cellular proliferation in RMS.
Fig. 5: Displacement of EZH2 binding to the miR-29a promoter by GRIP-1 to activate miR-29a expression during the myogenic differentiation of RMS cells.
Fig. 6: GATA-4 functions as a tumor suppressor in RMS.
Fig. 7: GATA-4 functions as a tumor suppressor partly through the regulation of miR-29a.

Similar content being viewed by others

Data availability

The source data that support the findings of this study are available in figshare with the identifier https://doi.org/10.6084/m9.figshare.20173850.

References

  1. Chen C, Dorado Garcia H, Scheer M, Henssen AG. Current and future treatment strategies for rhabdomyosarcoma. Front Oncol. 2019;9:1458.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Missiaglia E, Shepherd CJ, Aladowicz E, Olmos D, Selfe J, Pierron G, et al. MicroRNA and gene co-expression networks characterize biological and clinical behavior of rhabdomyosarcomas. Cancer Lett. 2017;385:251–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanna JA, Garcia MR, Lardennois A, Leavey PJ, Maglic D, Fagnan A, et al. PAX3-FOXO1 drives miR-486-5p and represses miR-221 contributing to pathogenesis of alveolar rhabdomyosarcoma. Oncogene 2018;37:1991–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pandey PR, Chatterjee B, Olanich ME, Khan J, Miettinen MM, Hewitt SM, et al. PAX3-FOXO1 is essential for tumour initiation and maintenance but not recurrence in a human myoblast model of rhabdomyosarcoma. J Pathol. 2017;241:626–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Megiorni F. Epigenetics in rhabdomyosarcoma: cues to new biomarkers and targeted therapies. EBioMedicine. 2020;52:102673.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cieśla M, Dulak J, Józkowicz A. MicroRNAs and epigenetic mechanisms of rhabdomyosarcoma development. Int J Biochem Cell Biol. 2014;53:482–92.

    Article  PubMed  Google Scholar 

  7. Bersani F, Lingua MF, Morena D, Foglizzo V, Miretti S, Lanzetti L, et al. Deep sequencing reveals a novel miR-22 regulatory network with therapeutic potential in rhabdomyosarcoma. Cancer Res. 2016;76:6095–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ballarino M, Morlando M, Fatica A, Bozzoni I. Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Investig. 2016;126:2021–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun M, Huang F, Yu D, Zhang Y, Xu H, Zhang L, et al. Autoregulatory loop between TGF-beta1/miR-411-5p/SPRY4 and MAPK pathway in rhabdomyosarcoma modulates proliferation and differentiation. Cell death Dis. 2015;6:e1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vella S, Pomella S, Leoncini PP, Colletti M, Conti B, Marquez VE, et al. MicroRNA-101 is repressed by EZH2 and its restoration inhibits tumorigenic features in embryonal rhabdomyosarcoma. Clin Epigenetics. 2015;7:82.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008;14:369–81.

    Article  CAS  PubMed  Google Scholar 

  12. Wei W, He HB, Zhang WY, Zhang HX, Bai JB, Liu HZ, et al. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis. 2013;4:e668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chikenji A, Ando H, Nariyama M, Suga T, Iida R, Gomi K. MyoD is regulated by the miR-29a-Tet1 pathway in C2C12 myoblast cells. J Oral Sci. 2016;58:219–29.

    Article  CAS  PubMed  Google Scholar 

  14. Yao CX, Wei QX, Zhang YY, Wang WP, Xue LX, Yang F, et al. miR-200b targets GATA-4 during cell growth and differentiation. RNA Biol. 2013;10:465–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mikhailov AT, Torrado M. Myocardial transcription factors in diastolic dysfunction: clues for model systems and disease. Heart Fail Rev. 2016;21:783–94.

    Article  CAS  PubMed  Google Scholar 

  16. Whitcomb J, Gharibeh L, Nemer M. From embryogenesis to adulthood: Critical role for GATA factors in heart development and function. IUBMB Life. 2020;72:53–67.

  17. Wannenes F, Caprio M, Gatta L, Fabbri A, Bonini S, Moretti C. Androgen receptor expression during C2C12 skeletal muscle cell line differentiation. Mol Cell Endocrinol. 2008;292:11–19.

    Article  CAS  PubMed  Google Scholar 

  18. Chen SL, Dowhan DH, Hosking BM, Muscat GE. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev. 2000;14:1209–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chinenov Y, Gupte R, Dobrovolna J, Flammer JR, Liu B, Michelassi FE, et al. Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc Natl Acad Sci USA. 2012;109:11776–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013;20:1147–55.

    Article  PubMed  Google Scholar 

  21. He A, Shen X, Ma Q, Cao J, von Gise A, Zhou P, et al. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev. 2012;26:37–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai R, Qimuge N, Ma M, Wang Y, Tang G, Zhang Q, et al. MicroRNA-664-5p promotes myoblast proliferation and inhibits myoblast differentiation by targeting serum response factor and Wnt1. J Biol Chem. 2018;293:19177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiu H, Liu N, Luo L, Zhong J, Tang Z, Kang K, et al. MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis. Cell Death Differ. 2016;23:1658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kouznetsova VL, Tchekanov A, Li X, Yan X, Tsigelny IF. Polycomb repressive 2 complex-Molecular mechanisms of function. Protein Sci. 2019;28:1387–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Healy E, Mucha M, Glancy E, Fitzpatrick DJ, Conway E, Neikes HK, et al. PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation. Mol Cell. 2019;76:437−52.

  26. Cutter DiPiazza AR, Taneja N, Dhakshnamoorthy J, Wheeler D, Holla S, Grewal SIS. Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. Proc Natl Acad Sci USA. 2021;118:e2100699118.

  27. Qu Y, Lu D, Jiang H, Chi X, Zhang H. EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI. Nucleic Acids Res. 2016;44:7659–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davicioni E, Finckenstein FG, Shahbazian V, Buckley JD, Triche TJ, Anderson MJ. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res. 2006;66:6936–46.

    Article  CAS  PubMed  Google Scholar 

  29. Hinson AR, Jones R, Crose LE, Belyea BC, Barr FG, Linardic CM. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: utility and pitfalls. Front Oncol. 2013;3:183.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bevilacqua A, Willis MS, Bultman SJ. SWI/SNF chromatin-remodeling complexes in cardiovascular development and disease. Cardiovasc Pathol. 2014;23:85–91.

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz YB, Pirrotta V. Ruled by ubiquitylation: a new order for polycomb recruitment. Cell Rep. 2014;8:321–5.

    Article  CAS  PubMed  Google Scholar 

  32. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Achour C, Aguilo F. Long non-coding RNA and Polycomb: an intricate partnership in cancer biology. Front Biosci . 2018;23:2106–32.

    Article  CAS  Google Scholar 

  34. Dai X, Chen C, Yang Q, Xue J, Chen X, Sun B, et al. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis. 2018;9:454.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, et al. GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol. 2003;23:8429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Charron F, Tsimiklis G, Arcand M, Robitaille L, Liang Q, Molkentin JD, et al. Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes Dev. 2001;15:2702–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma CX, Song YL, Xiao L, Xue LX, Li WJ, Laforest B, et al. EGF is required for cardiac differentiation of P19CL6 cells through interaction with GATA-4 in a time- and dose-dependent manner. Cell Mol Life Sci. 2015;72:2005–22.

    Article  CAS  PubMed  Google Scholar 

  38. Irrcher I, Ljubicic V, Kirwan AF, Hood DA. AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells. PLoS ONE. 2008;3:e3614.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vu LP, Luciani L, Nimer SD. Histone-modifying enzymes: their role in the pathogenesis of acute leukemia and their therapeutic potential. Int J Hematol. 2013;97:198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiong CJ, Li PF, Song YL, Xue LX, Jia ZQ, Yao CX, et al. Insulin induces C2C12 cell proliferation and apoptosis through regulation of cyclin D1 and BAD expression. J Cell Biochem. 2013;114:2708–17.

    Article  CAS  PubMed  Google Scholar 

  41. Yao CX, Xiong CJ, Wang WP, Yang F, Zhang SF, Wang TQ, et al. Transcription factor GATA-6 recruits PPARalpha to cooperatively activate Glut4 gene expression. J Mol Biol. 2012;415:143–58.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang S, Yin Z, Dai FF, Wang H, Zhou MJ, Yang MH, et al. miR-29a attenuates cardiac hypertrophy through inhibition of PPARdelta expression. J Cell Physiol. 2019;234:13252–62.

  43. Yao CX, Shi JC, Ma CX, Xiong CJ, Song YL, Zhang SF, et al. EGF protects cells against Dox-induced growth arrest through activating cyclin D1 expression. J Cell Biochem. 2015;116:1755–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 82072975, 81771631, 81672091, and 91749107), the High-Level Talents of Henan Province, particularly the support for the Central Plains Thousand Talents Program, which are the leading talents of Central Plains Basic Research (ZYQR201810120), 2022 Henan Province Science and Technology R&D Program Joint Fund (Cultivation of Superior Disciplines), and the key project of discipline construction of Zhengzhou University in 2020 (XKZDQY202002).

Author information

Authors and Affiliations

Authors

Contributions

MXZ, LXX and WGZ conceived, designed, and directed the study. YLS performed most ChIP, GST pull-down, and coimmunoprecipitation experiments. MHY performed real-time PCR and transfection experiments. SZ finishes cell proliferation assay and Xenograft tumor experiment. HW performed immunofluorescence and immunohistochemistry assays. KLK, CXY, FFD, MJZ, JBL, ZRW, and ZNY analyzed data.

Corresponding authors

Correspondence to Lixiang Xue or Ming-Xi Zang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YL., Yang, MH., Zhang, S. et al. A GRIP-1–EZH2 switch binding to GATA-4 is linked to the genesis of rhabdomyosarcoma through miR-29a. Oncogene 41, 5223–5237 (2022). https://doi.org/10.1038/s41388-022-02521-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02521-5

Search

Quick links