Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear translocation of Gasdermin D sensitizes colorectal cancer to chemotherapy in a pyroptosis-independent manner

Abstract

Gasdermin D (GSDMD) has recently been identified as a cytoplasmic effector protein that plays a central role in pyroptosis of immune cells. However, GSDMD is a universally expressed protein, and its function beyond pyroptosis, especially in cancer cells, has not been well characterized. Here, we report that predominant localization of GSDMD in the nucleoplasm in vivo indicates favorable clinical outcomes in colorectal cancer, while a lack of nuclear localization of GSDMD is associated with poor outcomes. Nuclear GSDMD, rather than cytoplasmic GSDMD, inhibits cell growth and promotes apoptosis in colorectal cancer. Hypoxia in the tumor microenvironment accounts for mild or moderate nuclear translocation of GSDMD in vivo. Under the stimulation of chemotherapy drugs, nuclear GSDMD promotes apoptosis via regulation of its subcellular distribution rather than pyroptosis-related cleavage. After nuclear translocation, GSDMD interacts with PARP-1 to dramatically inhibit its DNA damage repair-related function by functioning like the PARP inhibitor olaparib, thus forming a “hypoxia/chemotherapy—GSDMD nuclear translocation—PARP-1 blockade—DNA damage and apoptosis” axis. This study redefines the pyroptosis-independent function of GSDMD and suggests that the subcellular localization of GSDMD may serve as a molecular indicator of clinical outcomes and a promising therapeutic target in colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GSDMD is mainly expressed in the nucleoplasm of colorectal cancer cells, and a lack of nuclear expression of GSDMD is associated with worse clinical outcomes.
Fig. 2: Nuclear translocation of GSDMD inhibits some malignant phenotypes of colorectal cancer.
Fig. 3: Hypoxia induces GSDMD translocation into the nucleus in vivo and in vitro.
Fig. 4: GSDMD enhances chemotherapy drug-induced apoptosis in RKO and SW1116 cells independently of cleavage-related pyroptosis.
Fig. 5: Nuclear GSDMD interacts with PARP-1 to inhibit its DNA damage repair-related function.
Fig. 6: GSDMD inhibits PARP-1 function by binding to the PARP-1 CA domain.
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings “Protein Mass Spectrometry on GSDMD Interacting Protein” of this study are openly available in Figshare at https://doi.org/10.6084/m9.figshare.19544923.

References

  1. Linnekamp JF, Wang X, Medema JP, Vermeulen L. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Res. 2015;75:245–9.

    Article  CAS  PubMed  Google Scholar 

  2. Zhai Z, Yu X, Yang B, Zhang Y, Zhang L, Li X, et al. Colorectal cancer heterogeneity and targeted therapy: clinical implications, challenges and solutions for treatment resistance. Semin Cell Dev Biol. 2017;64:107–15.

    Article  PubMed  Google Scholar 

  3. Gutting T, Burgermeister E, Hartel N, Ebert MP. Checkpoints and beyond—immunotherapy in colorectal cancer. Semin Cancer Biol. 2018;55:78–89.

    Article  PubMed  Google Scholar 

  4. Kather JN, Halama N, Jaeger D. Genomics and emerging biomarkers for immunotherapy of colorectal cancer. Semin Cancer Biol. 2018;52:189–97.

    Article  CAS  PubMed  Google Scholar 

  5. Wolpin BM, Mayer RJ. Systemic treatment of colorectal cancer. Gastroenterology. 2008;134:1296–310.

    Article  CAS  PubMed  Google Scholar 

  6. Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20:648–59.

    Article  CAS  PubMed  Google Scholar 

  7. Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol. 2016;8:57–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng SB, Nakashima A, Huber WJ, Davis S, Banerjee S, Huang Z, et al. Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors. Cell Death Dis. 2019;10:927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McKenzie BA, Fernandes JP, Doan MAL, Schmitt LM, Branton WG, Power C. Activation of the executioner caspases-3 and -7 promotes microglial pyroptosis in models of multiple sclerosis. J Neuroinflammation. 2020;17:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karmakar M, Minns M, Greenberg EN, Diaz-Aponte J, Pestonjamasp K, Johnson JL, et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat Commun. 2020;11:2212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  13. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.

    Article  CAS  PubMed  Google Scholar 

  14. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 2015;25:1285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547:99–103.

    Article  CAS  PubMed  Google Scholar 

  16. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017;8:14128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020;579:415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;368:eaaz7548.

    Article  PubMed  Google Scholar 

  19. Smith AE, Kalderon D, Roberts BL, Colledge WH, Edge M, Gillett P, et al. The nuclear location signal. Proc R Soc Lond B Biol Sci. 1985;226:43–58.

    Article  CAS  PubMed  Google Scholar 

  20. Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear location. Cell. 1984;39:499–509.

    Article  CAS  PubMed  Google Scholar 

  21. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:157.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martin JD, Fukumura D, Duda DG, Boucher Y, Jain RK. Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb Perspect Med. 2016;6:a027094.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jakobsen JN, Sørensen JB. Clinical impact of ki-67 labeling index in non-small cell lung cancer. Lung Cancer. 2013;79:1–7.

    Article  PubMed  Google Scholar 

  24. Pyo JS, Kang G, Sohn JH. Ki-67 labeling index can be used as a prognostic marker in gastrointestinal stromal tumor: a systematic review and meta-analysis. Int J Biol Markers. 2016;31:e204–210.

    Article  PubMed  Google Scholar 

  25. Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42:245–54.

    Article  CAS  PubMed  Google Scholar 

  26. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25:1285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pascal JM. The comings and goings of PARP-1 in response to DNA damage. DNA Repair. 2018;71:177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Luo W, Wang Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair. 2019;81:102651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jans DA, Martin AJ, Wagstaff KM. Inhibitors of nuclear transport. Curr Opin Cell Biol. 2019;58:50–60.

    Article  CAS  PubMed  Google Scholar 

  30. Çağatay T, Chook YM. Karyopherins in cancer. Curr Opin Cell Biol. 2018;52:30–42.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bouchard VJ, Rouleau M, Poirier GG. PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol. 2003;31:446–54.

    Article  CAS  PubMed  Google Scholar 

  32. Langelier MF, Pascal JM. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr Opin Struct Biol. 2013;23:134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: meaning and significance. Environ Mol Mutagen. 2015;56:491–504.

    Article  CAS  PubMed  Google Scholar 

  34. Lane RJ, Khin NY, Pavlakis N, Hugh TJ, Clarke SJ, Magnussen J, et al. Challenges in chemotherapy delivery: comparison of standard chemotherapy delivery to locoregional vascular mass fluid transfer. Future Oncol. 2018;14:647–63.

    Article  CAS  PubMed  Google Scholar 

  35. Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol. 2011;5:387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu B, Jiang M, Chu Y, Wang W, Chen D, Li X, et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J. Hepatol. 2017.

  37. Khanova E, Wu R, Wang W, Yan R, Chen Y, French SW, et al. Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients. Hepatology. 2018;67:1737–53.

    Article  CAS  PubMed  Google Scholar 

  38. Komiyama H, Aoki A, Tanaka S, Maekawa H, Kato Y, Wada R, et al. Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB). Genes Genet Syst. 2010;85:75–83.

    Article  CAS  PubMed  Google Scholar 

  39. Saeki N, Usui T, Aoyagi K, Kim DH, Sato M, Mabuchi T, et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes, Chromosomes Cancer. 2009;48:261–71.

    Article  CAS  PubMed  Google Scholar 

  40. Saeki N, Kim DH, Usui T, Aoyagi K, Tatsuta T, Aoki K, et al. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-beta-dependent apoptotic signalling. Oncogene. 2007;26:6488–98.

    Article  CAS  PubMed  Google Scholar 

  41. Wang WJ, Chen D, Jiang MZ, Xu B, Li XW, Chu Y, et al. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J Dig Dis. 2018;19:74–83.

    Article  CAS  PubMed  Google Scholar 

  42. Gao J, Qiu X, Xi G, Liu H, Zhang F, Lv T, et al. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in nonsmall cell lung cancer. Oncol Rep. 2018;40:1971–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Yin B, Li D, Wang G, Han X, Sun X. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun. 2018;495:1418–25.

    Article  CAS  PubMed  Google Scholar 

  44. Peddareddigari VG, Wang D, Dubois RN. The tumor microenvironment in colorectal carcinogenesis. Cancer Microenviron. 2010;3:149–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7:10.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008;8:180–92.

    Article  CAS  PubMed  Google Scholar 

  47. Kumareswaran R, Ludkovski O, Meng A, Sykes J, Pintilie M, Bristow RG. Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. J Cell Sci. 2012;125:189–99.

    Article  CAS  PubMed  Google Scholar 

  48. Mathew C, Ghildyal R. CRM1 inhibitors for antiviral therapy. Front Microbiol. 2017;8:1171.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kim HJ, Taylor JP. Lost in transportation: nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases. Neuron. 2017;96:285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, et al. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res. 2015;21:4257–61.

    Article  CAS  PubMed  Google Scholar 

  51. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmana J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33:244–50.

    Article  CAS  PubMed  Google Scholar 

  52. Matulonis UA, Penson RT, Domchek SM, Kaufman B, Shapira-Frommer R, Audeh MW, et al. Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: a multistudy analysis of response rates and safety. Ann Oncol. 2016;27:1013–9.

    Article  CAS  PubMed  Google Scholar 

  53. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA. 2008;105:17079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Basourakos SP, Li L, Aparicio AM, Corn PG, Kim J, Thompson TC. Combination platinum-based and DNA damage response-targeting cancer therapy: evolution and future directions. Curr Med Chem. 2017;24:1586–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu K, Chen Z, Cui Y, Qin C, He Y, Song X. Combined olaparib and oxaliplatin inhibits tumor proliferation and induces G2/M arrest and gamma-H2AX foci formation in colorectal cancer. OncoTargets Ther. 2015;8:3047–54.

    Article  CAS  Google Scholar 

  56. Jia H, Song L, Cong Q, Wang J, Xu H, Chu Y, et al. The LIM protein AJUBA promotes colorectal cancer cell survival through suppression of JAK1/STAT1/IFIT2 network. Oncogene. 2017;36:2655–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Feng Shao (National Institute of Biological Science) for the kind gift of the PCS2-Flag-tagged GSDMD plasmid. This project was supported by the National Natural Science Foundation of China (NSFC82002427, NSFC 30801132) and the Shanghai Chest Hospital Outstanding Talent Cultivation Project (2018YNZYB03).

Author information

Authors and Affiliations

Authors

Contributions

LS, YY, SA: experimental design and drafting of the manuscript; XP, RN: execution of most experiments, such as Western blot, IF and FCM; WZ, XM: clinical data collection and IHC of colorectal cancer TMAs and mouse tumor masses; XP: FCM of apoptosis and statistics; LS, YY: project supervision and guidance. All authors: Approval of the final version to be published.

Corresponding authors

Correspondence to Yunhai Yang, Shohreh Amini or Liwei Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Na, R., Zhou, W. et al. Nuclear translocation of Gasdermin D sensitizes colorectal cancer to chemotherapy in a pyroptosis-independent manner. Oncogene 41, 5092–5106 (2022). https://doi.org/10.1038/s41388-022-02503-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02503-7

This article is cited by

Search

Quick links