Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-genomic activation of the AKT-mTOR pathway by the mitochondrial stress response in thyroid cancer

Abstract

Cancer progression is associated with metabolic reprogramming and causes significant intracellular stress; however, the mechanisms that link cellular stress and growth signalling are not fully understood. Here, we identified a mechanism that couples the mitochondrial stress response (MSR) with tumour progression. We demonstrated that the MSR is activated in a significant proportion of human thyroid cancers via the upregulation of heat shock protein D family members and the mitokine, growth differentiation factor 15. Our study also revealed that MSR triggered AKT/S6K signalling by activating mTORC2 via activating transcription factor 4/sestrin 2 activation whilst promoting leucine transporter and nutrient-induced mTORC1 activation. Importantly, we found that an increase in mtDNA played an essential role in MSR-induced mTOR activation and that crosstalk between MYC and MSR potentiated mTOR activation. Together, these findings suggest that the MSR could be a predictive marker for aggressive human thyroid cancer as well as a useful therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mtDNA copy number, mtUPR, and mTOR signalling in thyroid cancer.
Fig. 2: mtUPR is closely related to the integrated stress response for mTOR signalling activation.
Fig. 3: Dual mechanism via which MSR maintains mTOR activity.
Fig. 4: Integrated stress response comparison between mtUPR and ER UPR.
Fig. 5: mtDNA depletion affects the integrated stress response from mitochondria and the ER.
Fig. 6: MYC transactivation is a critical regulator of positive feedback loop formation in the MSR.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during this study are available from the corresponding author on reasonable request.

References

  1. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  3. Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25:1041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon S-O, et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell. 2010;38:487–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008;105:18782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chandel NS. Evolution of mitochondria as signaling organelles. Cell Metab. 2015;22:204–6.

    Article  CAS  PubMed  Google Scholar 

  9. Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol. 2016;17:213.

    Article  PubMed  Google Scholar 

  10. Matilainen O, Quirós PM, Auwerx J. Mitochondria and epigenetics–crosstalk in homeostasis and stress. Trends Cell Biol. 2017;27:453–63.

    Article  CAS  PubMed  Google Scholar 

  11. O’Malley J, Kumar R, Inigo J, Yadava N, Chandra D. Mitochondrial stress response and cancer. Trends Cancer. 2020;6:688–701.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011;144:79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci. 2004;117:4055–66.

    Article  CAS  PubMed  Google Scholar 

  14. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science. 2012;337:587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497:451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D’Amico D, Sorrentino V, Auwerx J. Cytosolic proteostasis networks of the mitochondrial stress response. Trends Biochem Sci. 2017;42:712–25.

    Article  PubMed  Google Scholar 

  17. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.

    Article  CAS  PubMed  Google Scholar 

  18. Quiros PM, Prado MA, Zamboni N, D’Amico D, Williams RW, Finley D, et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol. 2017;216:2027–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tyynismaa H, Carroll CJ, Raimundo N, Ahola-Erkkilä S, Wenz T, Ruhanen H, et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet. 2010;19:3948–58.

    Article  CAS  PubMed  Google Scholar 

  20. Martínez-Reyes I, Sánchez-Aragó M, Cuezva JM. AMPK and GCN2–ATF4 signal the repression of mitochondria in colon cancer cells. Biochem J. 2012;444:249–59.

    Article  PubMed  Google Scholar 

  21. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  22. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  23. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou Q, Liu C, Liu W, Zhang H, Zhang R, Liu J, et al. Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol Sci. 2015;143:81–96.

    Article  CAS  PubMed  Google Scholar 

  25. Peng M, Ostrovsky J, Kwon YJ, Polyak E, Licata J, Tsukikawa M, et al. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Hum Mol Genet. 2015;24:4829–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M, Castanza A, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342:1524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng X, Boyer L, Jin M, Kim Y, Fan W, Bardy C, et al. Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. Elife. 2016;5:e13378.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nacarelli T, Azar A, Sell C. Aberrant mTOR activation in senescence and aging: a mitochondrial stress response? Exp Gerontol. 2015;68:66–70.

    Article  CAS  PubMed  Google Scholar 

  29. Steffen KK, Dillin A. A ribosomal perspective on proteostasis and aging. Cell Metab. 2016;23:1004–12.

    Article  CAS  PubMed  Google Scholar 

  30. Ding L, Bailey MH, Porta-Pardo E, Thorsson V, Colaprico A, Bertrand D, et al. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell. 2018;173:305–320.e310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371–385.e318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell. 2018;33:676–89.e673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Kwok-Shing NgP, Kucherlapati M, Chen F, Liu Y, Tsang YH, et al. A Pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell. 2017;31:820–832.e823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An Integrated TCGA Pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400–416.e411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell. 2018;173:321–337.e310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng X, Chen Z, Farshidfar F, Xu X, Lorenzi PL, Wang Y, et al. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep. 2018;23:255–269.e254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.

    Article  PubMed Central  Google Scholar 

  39. Bao X, Zhang J, Huang G, Yan J, Xu C, Dou Z, et al. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Cell Death Dis. 2021;12:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–80.

    Article  CAS  PubMed  Google Scholar 

  41. Ishida S, Andreux P, Poitry-Yamate C, Auwerx J, Hanahan D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci USA 2013;110:19507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yi HS, Chang JY, Shong M. The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol. 2018;61:R91–R105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 2015;10:1681–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Byun J-K, Choi Y-K, Kim J-H, Jeong JY, Jeon H-J, Kim M-K, et al. A positive feedback loop between sestrin2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells. Cell Rep. 2017;20:586–99.

    Article  CAS  PubMed  Google Scholar 

  45. Kowalsky AH, Namkoong S, Mettetal E, Park HW, Kazyken D, Fingar DC, et al. The GATOR2-mTORC2 axis mediates Sestrin2-induced AKT Ser/Thr kinase activation. J Biol Chem. 2020;295:1769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garaeva AA, Kovaleva IE, Chumakov PM, Evstafieva AG. Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4. Cell Cycle. 2016;15:64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351:43–48.

    Article  CAS  PubMed  Google Scholar 

  48. Saxton RA, Knockenhauer KE, Wolfson RL, Chantranupong L, Pacold ME, Wang T, et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science. 2016;351:53–58.

    Article  CAS  PubMed  Google Scholar 

  49. Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H, et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 2001;61:6105–11.

    CAS  PubMed  Google Scholar 

  50. Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 2007;104:2803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Knippler CM, Saji M, Rajan N, Porter K, La Perle K, Ringel MD. MAPK- and AKT-activated thyroid cancers are sensitive to group I PAK inhibition. Endocr Relat Cancer. 2019;26:699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13:184–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matts RL, Levin DH, London IM. Effect of phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 on the function of reversing factor in the initiation of protein synthesis. Proc Natl Acad Sci USA 1983;80:2559–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang J, Gao Z, Yin J, Quon MJ, Ye J. S6K directly phosphorylates IRS-1 on Ser270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem. 2008;283:35375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431:200–5.

    Article  CAS  PubMed  Google Scholar 

  56. King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989;246:500–3.

    Article  CAS  PubMed  Google Scholar 

  57. Yu M, Shi Y, Wei X, Yang Y, Zhou Y, Hao X, et al. Depletion of mitochondrial DNA by ethidium bromide treatment inhibits the proliferation and tumorigenesis of T47D human breast cancer cells. Toxicol Lett. 2007;170:83–93.

    Article  CAS  PubMed  Google Scholar 

  58. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–7.

    Article  CAS  PubMed  Google Scholar 

  59. Lee MH, Lee SE, Kim DW, Ryu MJ, Kim SJ, Kim SJ, et al. Mitochondrial localization and regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to block the mitochondrial activities of BRAFV600E. J Clin Endocrinol Metab. 2011;96:E19–30.

    Article  CAS  PubMed  Google Scholar 

  60. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  61. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.

    Article  CAS  PubMed  Google Scholar 

  62. Mathupala SP, Ko YH, Pedersen PL. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta. 2010;1797:1225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene. 2002;21:6017.

    Article  CAS  PubMed  Google Scholar 

  64. Park H-W, Park H, Ro S-H, Jang I, Semple IA, Kim DN, et al. Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun. 2014;5:4233.

    Article  CAS  PubMed  Google Scholar 

  65. Peng M, Yin N, Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell. 2014;159:122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ye J, Palm W, Peng M, King B, Lindsten T, Li MO, et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 2015;29:2331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, et al. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 2014;9:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 2014;9:1281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chae YC, Vaira V, Caino MC, Tang H-Y, Seo JH, Kossenkov AV, et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming. Cancer Cell. 2016;30:257–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Anti-SESN2 polyclonal antibodies and SESN2 plasmids were provided by Prof. Soo Han Bae (Severance Biomedical Science Institute and Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 03722, Seoul, South Korea). We thank Ji Young Kim, Hee Chang Yu, Hoyoung Kim, and Hwa Young Lee for their excellent technical support.

Funding

We received funding from the National Research Foundation of Korea grant, funded by the Korean government NRF-2018R1A2B6004179 and NRF-2021R1H1A2012035 (YSJ); NRF-2020R1A2C1006047 (JL); NRF-2020R1I1A1A01069524 (SP); National Research Foundation of Korea GRL grant NRF-2017K1A1A2013124 (JA); École Polytechnique Fédérale de Lausanne (JA and KS); European Research Council ERC-AdG-787702 (JA); Swiss Cancer Research KFS-4226-08-2017 (KS); and Swiss National Science Foundation, Sinergia CRSII3_160798 (KS).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JA, JL, and YSJ; Methodology: WKL, SP, SGL, SJ, GL, DR, KS, and JA; Investigation: WKL, SP, SGL, SJ, GL, and DR; Visualization: WKL, SP, SGL, SJ, and GL; Funding acquisition: KS, JA, JL, and YSJ; Project administration: JL and YSJ; Supervision: KS, JA, JL, and YSJ. Writing – original draft: WKL and SP; Writing – review & editing: WKL, SP, SGL, KS, JA, JL, and YSJ.

Corresponding authors

Correspondence to Jandee Lee or Young Suk Jo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doolittle, W.K.L., Park, S., Lee, S.G. et al. Non-genomic activation of the AKT-mTOR pathway by the mitochondrial stress response in thyroid cancer. Oncogene 41, 4893–4904 (2022). https://doi.org/10.1038/s41388-022-02484-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02484-7

This article is cited by

Search

Quick links