Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurotransmitter signaling: a new frontier in colorectal cancer biology and treatment

Abstract

The brain–gut axis, a bidirectional network between the central and enteric nervous system, plays a critical role in modulating the gastrointestinal tract function and homeostasis. Recently, increasing evidence suggests that neuronal signaling molecules can promote gastrointestinal cancers, however, the mechanisms remain unclear. Aberrant expression of neurotransmitter signaling genes in colorectal cancer supports the role of neurotransmitters to stimulate tumor growth and metastatic spread by promoting cell proliferation, migration, invasion, and angiogenesis. In addition, neurotransmitters can interact with immune and endothelial cells in the tumor microenvironment to promote inflammation and tumor progression. As such, pharmacological targeting of neurotransmitter signaling represent a promising novel anticancer approach. Here, we present an overview of the current evidence supporting the role of neurotransmitters in colorectal cancer biology and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interaction between neurotransmitters, colorectal cancer, and tumor microenvironment.

Similar content being viewed by others

References

  1. Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O’Connor G, et al. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol. 2017;232:2359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis. Science. 2021;374:1087–92.

    Article  CAS  PubMed  Google Scholar 

  3. Catalá-López F, Suárez-Pinilla M, Suárez-Pinilla P, Valderas JM, Gómez-Beneyto M, Martinez S, et al. Inverse and direct cancer comorbidity in people with central nervous system disorders: a meta-analysis of cancer incidence in 577,013 participants of 50 observational studies. Psychother Psychosom. 2014;83:89–105.

    Article  PubMed  Google Scholar 

  4. Feng DD, Cai W, Chen X. The associations between Parkinson’s disease and cancer: the plot thickens. Transl Neurodegener. 2015;4:20.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ejma M, Madetko N, Brzecka A, Guranski K, Alster P, Misiuk-Hojło M, et al. The links between Parkinson’s disease and cancer. Biomedicines. 2020;8:416.

    Article  CAS  PubMed Central  Google Scholar 

  6. Jiang S-H, Hu L-P, Wang X, Li J, Zhang Z-G. Neurotransmitters: emerging targets in cancer. Oncogene. 2020;39:503–15.

    Article  CAS  PubMed  Google Scholar 

  7. Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9:286–94.

    Article  CAS  PubMed  Google Scholar 

  8. Tait C, Sayuk GS. The brain-gut-microbiotal axis: a framework for understanding functional GI illness and their therapeutic interventions. Eur J Intern Med. 2021;84:1–9.

    Article  PubMed  Google Scholar 

  9. Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: from motility to mood. Gastroenterology. 2021;160:1486–501.

    Article  CAS  PubMed  Google Scholar 

  10. Schledwitz A, Xie G, Raufman JP. Exploiting unique features of the gut-brain interface to combat gastrointestinal cancer. J Clin Investig. 2021;131:e143776.

    Article  CAS  PubMed Central  Google Scholar 

  11. Lutgendorf SK, Sood AK. Biobehavioral factors and cancer progression: physiological pathways and mechanisms. Psychosom Med. 2011;73:724–30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tatsuta M, Iishi H, Baba M, Taniguchi H. Inhibition of azoxymethane-induced experimental colon carcinogenesis in Wistar rats by 6-hydroxydopamine. Int J Cancer. 1992;50:298–301.

    Article  CAS  PubMed  Google Scholar 

  13. Sadighparvar S, Darband SG, Ghaderi-Pakdel F, Mihanfar A, Majidinia M. Parasympathetic, but not sympathetic denervation, suppressed colorectal cancer progression. Eur J Pharmacol. 2021;913:174626.

    Article  CAS  PubMed  Google Scholar 

  14. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.

    Article  CAS  PubMed  Google Scholar 

  15. Penedo MA, Rivera-Baltanás T, Pérez-Rodríguez D, Allen J, Borrajo A, Alonso-Crespo D, et al. The role of dopamine receptors in lymphocytes and their changes in schizophrenia. Brain Behav Immun Health. 2021;12:100199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.

    Article  CAS  PubMed  Google Scholar 

  17. Beaulieu JM, Espinoza S, Gainetdinov RR. Dopamine receptors—IUPHAR -review 13. Br J Pharm. 2015;172:1–23.

    Article  CAS  Google Scholar 

  18. Grant CE, Flis AL, Ryan BM. Understanding the role of dopamine in cancer: past, present and future. Carcinogenesis. 2022;43:517–27.

    Article  PubMed  Google Scholar 

  19. Leng ZG, Lin SJ, Wu ZR, Guo YH, Cai L, Shang HB, et al. Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy. 2017;13:1404–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kontos CK, Papadopoulos IN, Fragoulis EG, Scorilas A. Quantitative expression analysis and prognostic significance of L-DOPA decarboxylase in colorectal adenocarcinoma. Br J Cancer. 2010;102:1384–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gemignani F, Landi S, Moreno V, Gioia-Patricola L, Chabrier A, Guino E, et al. Polymorphisms of the dopamine receptor gene DRD2 and colorectal cancer risk. Cancer Epidemiol Biomark Prev. 2005;14:1633–8.

    Article  CAS  Google Scholar 

  22. Battaglin F, Cao S, Loupakis F, Stintzing S, Parikh AR, Puccini A, et al. Polymorphisms in the dopamine (DA) signaling to predict outcome in patients (pts) with metastatic colorectal cancer (mCRC): data from TRIBE, MAVERICC, and FIRE-3 phase III trials. J Clin Oncol. 2019;37:3048.

    Article  Google Scholar 

  23. Sarkar C, Chakroborty D, Chowdhury UR, Dasgupta PS, Basu S. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res. 2008;14:2502–10.

    Article  CAS  PubMed  Google Scholar 

  24. Ren Y, Tao J, Jiang Z, Guo D, Tang J. Pimozide suppresses colorectal cancer via inhibition of Wnt/beta-catenin signaling pathway. Life Sci. 2018;209:267–73.

    Article  CAS  PubMed  Google Scholar 

  25. Lee H, Shim S, Kong JS, Kim MJ, Park S, Lee SS, et al. Overexpression of dopamine receptor D2 promotes colorectal cancer progression by activating the β-catenin/ZEB1 axis. Cancer Sci. 2021;112:3732–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia Y, Jia C, Xue Q, Jiang J, Xie Y, Wang R, et al. Antipsychotic drug trifluoperazine suppresses colorectal cancer by inducing G0/G1 arrest and apoptosis. Front Pharmacol. 2019;10:1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017;124:901–5.

    Article  PubMed  Google Scholar 

  28. Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev. 2018;42:72–85.

    Article  CAS  PubMed  Google Scholar 

  29. Lee JYS, Ng JH, Saffari SE, Tan EK. Parkinson’s disease and cancer: a systematic review and meta-analysis on the influence of lifestyle habits, genetic variants, and gender. Aging. 2022;14:2148–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang H, Du Y, Pan S, Zhong M, Tang J. Patients with Parkinson’s disease predict a lower incidence of colorectal cancer. BMC Geriatr. 2021;21:564.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li W-H, Zhang H, Guo Q, Wu X-D, Xu Z-S, Dang C-X, et al. Detection of SNCA and FBN1 methylation in the stool as a biomarker for colorectal cancer. Dis Markers. 2015;2015:657570.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Killinger BA, Madaj Z, Sikora JW, Rey N, Haas AJ, Vepa Y, et al. The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci Transl Med. 2018;10:eaar5280.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Battaglin F, Cao S, Puccini A, Tokunaga R, Naseem M, Arai H, et al. Gene expression and genetic variants in Parkinson’s disease (PD) genes to predict outcome in metastatic colorectal cancer (mCRC): data from FIRE-3 phase III trial. J Clin Oncol. 2019;37:3595.

    Article  Google Scholar 

  34. Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008;60:1527–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang YC, Chien MH, Lai TC, Su CY, Jan YH, Hsiao M, et al. Monoamine oxidase B expression correlates with a poor prognosis in colorectal cancer patients and is significantly associated with epithelial-to-mesenchymal transition-related gene signatures. Int J Mol Sci. 2020;21:2813.

    Article  PubMed Central  Google Scholar 

  36. Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Monoamine oxidase (MAO) as a potential target for anticancer drug design and development. Molecules. 2021;26:6019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Y-C, Wang X, Yu J, Ma F, Li Z, Zhou Y, et al. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat Commun. 2021;12:3530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Li B, Kim YJ, Wang YC, Li Z, Yu J, et al. Targeting monoamine oxidase A for T cell-based cancer immunotherapy. Sci Immunol. 2021;6:eabh2383.

    Article  CAS  PubMed  Google Scholar 

  39. Auteri M, Zizzo MG, Serio R. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharm Res. 2015;93:11–21.

    Article  CAS  Google Scholar 

  40. Huang, Wang Y, Thompson JW, Yin T, Alexander PB, Qin D, et al. Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression. Nat Cell Biol. 2022;24:230–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan H, Tang G, Wang H, Hao L, He T, Sun X, et al. DNA methylation reactivates GAD1 expression in cancer by preventing CTCF-mediated polycomb repressive complex 2 recruitment. Oncogene. 2016;35:3995–4008.

    Article  CAS  PubMed  Google Scholar 

  42. Qiu Y, Cai G, Zhou B, Li D, Zhao A, Xie G, et al. A distinct metabolic signature of human colorectal cancer with prognostic potential. Clin Cancer Res. 2014;20:2136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. An J, Seok H, Ha EM. GABA-producing Lactobacillus plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant colorectal cancer cells via GABA. J Microbiol. 2021;59:202–16.

    Article  CAS  PubMed  Google Scholar 

  44. Joseph J, Niggemann B, Zaenker KS, Entschladen F. The neurotransmitter gamma-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res. 2002;62:6467–9.

    CAS  PubMed  Google Scholar 

  45. Song L, Du A, Xiong Y, Jiang J, Zhang Y, Tian Z, et al. γ-Aminobutyric acid inhibits the proliferation and increases oxaliplatin sensitivity in human colon cancer cells. Tumour Biol. 2016;37:14885–94.

    Article  CAS  PubMed  Google Scholar 

  46. Ngo DH, Vo TS. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules. 2019;24:2678.

    Article  CAS  PubMed Central  Google Scholar 

  47. Miao Y, Zhang Y, Wan H, Chen L, Wang F. GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. Biomed Pharmacother. 2010;64:583–8.

    Article  CAS  PubMed  Google Scholar 

  48. Shu Q, Liu J, Liu X, Zhao S, Li H, Tan Y, et al. GABAB R/GSK-3β/NF-κB signaling pathway regulates the proliferation of colorectal cancer cells. Cancer Med. 2016;5:1259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang H, Zhang H, Sun Z, Chen W, Miao C. GABAB receptor inhibits tumor progression and epithelial-mesenchymal transition via the regulation of Hippo/YAP1 pathway in colorectal cancer. Int J Biol Sci. 2021;17:1953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yan L, Gong YZ, Shao MN, Ruan GT, Xie HL, Liao XW, et al. Distinct diagnostic and prognostic values of γ-aminobutyric acid type A receptor family genes in patients with colon adenocarcinoma. Oncol Lett. 2020;20:275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu T, Fang Y. Research for expression and prognostic value of GABRD in colon cancer and coexpressed gene network construction based on data mining. Comput Math Methods Med. 2021;2021:5544182.

    PubMed  PubMed Central  Google Scholar 

  52. Zhang B, Vogelzang A, Miyajima M, Sugiura Y, Wu Y, Chamoto K, et al. B cell-derived GABA elicits IL-10. Nature 2021;599:471–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89:73–120.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang H, Kong Q, Wang J, Jiang Y, Hua H. Complex roles of cAMP–PKA–CREB signaling in cancer. Exp Hematol Oncol. 2020;9:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schuller HM. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat Rev Cancer. 2009;9:195–205.

    Article  CAS  PubMed  Google Scholar 

  56. Cheng K, Samimi R, Xie G, Shant J, Drachenberg C, Wade M, et al. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am J Physiol Gastrointest Liver Physiol. 2008;295:G591–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kawai H, Berg DK. Nicotinic acetylcholine receptors containing alpha 7 subunits on rat cortical neurons do not undergo long-lasting inactivation even when up-regulated by chronic nicotine exposure. J Neurochem. 2001;78:1367–78.

    Article  CAS  PubMed  Google Scholar 

  58. Hajiasgharzadeh K, Somi MH, Sadigh-Eteghad S, Mokhtarzadeh A, Shanehbandi D, Mansoori B, et al. The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon. 2020;6:e03611.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wei PL, Kuo LJ, Huang MT, Ting WC, Ho YS, Wang W, et al. Nicotine enhances colon cancer cell migration by induction of fibronectin. Ann Surg Oncol. 2011;18:1782–90.

    Article  PubMed  Google Scholar 

  60. Ye YN, Liu ES, Shin VY, Wu WK, Cho CH. The modulating role of nuclear factor-kappaB in the action of alpha7-nicotinic acetylcholine receptor and cross-talk between 5-lipoxygenase and cyclooxygenase-2 in colon cancer growth induced by 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone. J Pharm Exp Ther. 2004;311:123–30.

    Article  CAS  Google Scholar 

  61. Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes cell proliferation via alpha7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells. Toxicol Appl Pharm. 2007;221:261–7.

    Article  CAS  Google Scholar 

  62. Wong HPS, Yu L, Lam EKY, Tai EKK, Wu WKK, Cho C-H. Nicotine promotes colon tumor growth and angiogenesis through β-adrenergic activation. Toxicol Sci. 2007;97:279–87.

    Article  CAS  PubMed  Google Scholar 

  63. Xiang T, Fei R, Wang Z, Shen Z, Qian J, Chen W. Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway. Oncol Rep. 2016;35:205–10.

    Article  CAS  PubMed  Google Scholar 

  64. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9:125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pavlov VA, Tracey KJ. Neural circuitry and immunity. Immunol Res. 2015;63:38–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang L-H, et al. Modulation of TNF release by choline requires α7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med. 2008;14:567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.

    Article  CAS  PubMed  Google Scholar 

  68. Hayashi S, Hamada T, Zaidi SF, Oshiro M, Lee J, Yamamoto T, et al. Nicotine suppresses acute colitis and colonic tumorigenesis associated with chronic colitis in mice. Am J Physiol Gastrointest Liver Physiol. 2014;307:G968–78.

    Article  CAS  PubMed  Google Scholar 

  69. Eglen RM. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharm. 2006;26:219–33.

    Article  CAS  Google Scholar 

  70. Cheng K, Shang AC, Drachenberg CB, Zhan M, Raufman JP. Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis. Oncotarget. 2017;8:21106–14.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tolaymat M, Larabee SM, Hu S, Xie G, Raufman JP. The role of M3 muscarinic receptor ligand-induced kinase signaling in colon cancer progression. Cancers (Basel). 2019;11:308.

    Article  Google Scholar 

  72. Peng Z, Heath J, Drachenberg C, Raufman JP, Xie G. Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis. BMC Cancer. 2013;13:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Said AH, Hu S, Abutaleb A, Watkins T, Cheng K, Chahdi A, et al. Interacting post-muscarinic receptor signaling pathways potentiate matrix metalloproteinase-1 expression and invasion of human colon cancer cells. Biochem J. 2017;474:647–65.

    Article  CAS  PubMed  Google Scholar 

  74. Von Rosenvinge EC, Raufman JP. Muscarinic receptor signaling in colon cancer. Cancers. 2011;3:971–81.

    Article  Google Scholar 

  75. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6:250ra115.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hering NA, Liu V, Kim R, Weixler B, Droeser RA, Arndt M, et al. Blockage of cholinergic signaling via muscarinic acetylcholine receptor 3 inhibits tumor growth in human colorectal adenocarcinoma. Cancers (Basel). 2021;13:3220.

    Article  Google Scholar 

  77. Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 2008;68:3573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alizadeh M, Schledwitz A, Cheng K, Raufman JP. Mechanistic clues provided by concurrent changes in the expression of genes encoding the M(1) muscarinic receptor, β-catenin signaling proteins, and downstream targets in adenocarcinomas of the colon. Front Physiol. 2022;13:857563.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheng K, Xie G, Khurana S, Heath J, Drachenberg CB, Timmons J, et al. Divergent effects of muscarinic receptor subtype gene ablation on murine colon tumorigenesis reveals association of M3R and zinc finger protein 277 expression in colon neoplasia. Mol Cancer. 2014;13:77.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cheng K, Raufman JP. Bile acid-induced proliferation of a human colon cancer cell line is mediated by transactivation of epidermal growth factor receptors. Biochem Pharm. 2005;70:1035–47.

    Article  CAS  PubMed  Google Scholar 

  81. Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, et al. Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res Ther. 2016;7:181.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Raufman J-P, Dawson PA, Rao A, Drachenberg CB, Heath J, Shang AC, et al. Slc10a2-null mice uncover colon cancer-promoting actions of endogenous fecal bile acids. Carcinogenesis. 2015;36:1193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mawe GM, Hoffman JM. Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10:473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kwon YH, Khan WI. Peripheral serotonin: cultivating companionship with gut microbiota in intestinal homeostasis. Am J Physiol Cell Physiol. 2022;323:C550–5.

    Article  CAS  PubMed  Google Scholar 

  85. Kannen V, Bader M, Sakita JY, Uyemura SA, Squire JA. The dual role of serotonin in colorectal cancer. Trends Endocrinol Metab. 2020;31:611–25.

    Article  CAS  PubMed  Google Scholar 

  86. Li T, Fu B, Zhang X, Zhou Y, Yang M, Cao M, et al. Overproduction of gastrointestinal 5-HT promotes colitis-associated colorectal cancer progression via enhancing NLRP3 inflammasome activation. Cancer Immunol Res. 2021;9:1008–23.

    Article  PubMed  Google Scholar 

  87. Sui H, Xu H, Ji Q, Liu X, Zhou L, Song H, et al. 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/β-catenin/MMP-7 signaling pathway. Oncotarget. 2015;6:25975–87.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ataee R, Ajdary S, Zarrindast M, Rezayat M, Hayatbakhsh MR. Anti-mitogenic and apoptotic effects of 5-HT1B receptor antagonist on HT29 colorectal cancer cell line. J Cancer Res Clin Oncol. 2010;136:1461–9.

    Article  CAS  PubMed  Google Scholar 

  89. Nocito A, Dahm F, Jochum W, Jang JH, Georgiev P, Bader M, et al. Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res. 2008;68:5152–8.

    Article  CAS  PubMed  Google Scholar 

  90. Zhu P, Lu T, Chen Z, Liu B, Fan D, Li C, et al. 5-hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis. Neuron. 2022;110:2268–82.e4.

    Article  CAS  PubMed  Google Scholar 

  91. Sakita JY, Bader M, Santos ES, Garcia SB, Minto SB, Alenina N, et al. Serotonin synthesis protects the mouse colonic crypt from DNA damage and colorectal tumorigenesis. J Pathol. 2019;249:102–13.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang N, Sundquist J, Sundquist K, Zhang ZG, Ji J. Correction to: combined use of aspirin and selective serotonin reuptake inhibitors is associated with lower risk of colorectal cancer: a nested case-control study. Am J Gastroenterol. 2021;116:2310.

    Article  PubMed  Google Scholar 

  93. Kannen V, Garcia SB, Silva WA Jr., Gasser M, Mönch R, Alho EJ, et al. Oncostatic effects of fluoxetine in experimental colon cancer models. Cell Signal. 2015;27:1781–8.

    Article  CAS  PubMed  Google Scholar 

  94. Sarrouilhe D, Mesnil M. Serotonin and human cancer: a critical view. Biochimie 2019;161:46–50.

    Article  CAS  PubMed  Google Scholar 

  95. Fang CK, Chen HW, Chiang IT, Chen CC, Liao JF, Su TP, et al. Mirtazapine inhibits tumor growth via immune response and serotonergic system. PloS ONE. 2012;7:e38886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chan YL, Lai WC, Chen JS, Tseng JT, Chuang PC, Jou J, et al. TIAM2S mediates serotonin homeostasis and provokes a pro-inflammatory immune microenvironment permissive for colorectal tumorigenesis. Cancers (Basel). 2020;12:1844.

    Article  PubMed Central  Google Scholar 

  97. Di Y-Z, Han B-S, Di J-M, Liu W-Y, Tang Q. Role of the brain-gut axis in gastrointestinal cancer. World J Clin Cases. 2019;7:1554–70.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu S. Neurotrophic factors in enteric physiology and pathophysiology. Neurogastroenterol Motil. 2018;30:e13446.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Meldolesi J. Neurotrophin Trk receptors: new targets for cancer therapy. Rev Physiol Biochem Pharm. 2018;174:67–79.

    Article  CAS  Google Scholar 

  100. Radin DP, Patel P. BDNF: an oncogene or tumor suppressor? Anticancer Res. 2017;37:3983–90.

    CAS  PubMed  Google Scholar 

  101. Yang X, Martin TA, Jiang WG. Biological influence of brain-derived neurotrophic factor (BDNF) on colon cancer cells. Exp Ther Med. 2013;6:1475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fujikawa H, Tanaka K, Toiyama Y, Saigusa S, Inoue Y, Uchida K, et al. High TrkB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells. J Gastroenterol. 2012;47:775–84.

    Article  CAS  PubMed  Google Scholar 

  103. Huang SM, Lin C, Lin HY, Chiu CM, Fang CW, Liao KF, et al. Brain-derived neurotrophic factor regulates cell motility in human colon cancer. Endocr Relat Cancer. 2015;22:455–64.

    Article  CAS  PubMed  Google Scholar 

  104. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31:21–34.

    Article  CAS  PubMed  Google Scholar 

  105. Molloy NH, Read DE, Gorman AM. Nerve growth factor in cancer cell death and survival. Cancers. 2011;3:510–30.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Drilon A. TRK inhibitors in TRK fusion-positive cancers. Ann Oncol. 2019;30:viii23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kojadinovic A, Laderian B, Mundi PS. Targeting TRK: a fast-tracked application of precision oncology and future directions. Crit Rev Oncol Hematol. 2021;165:103451.

    Article  PubMed  Google Scholar 

  108. Fatemi SH. Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry. 2001;6:129–33.

    Article  CAS  PubMed  Google Scholar 

  109. Lee GH, D’Arcangelo G. New insights into reelin-mediated signaling pathways. Front Cell Neurosci. 2016;10:122.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dohi O, Takada H, Wakabayashi N, Yasui K, Sakakura C, Mitsufuji S, et al. Epigenetic silencing of RELN in gastric cancer. Int J Oncol. 2010;36:85–92.

    CAS  PubMed  Google Scholar 

  111. Sato N, Fukushima N, Chang R, Matsubayashi H, Goggins M. Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology. 2006;130:548–65.

    Article  CAS  PubMed  Google Scholar 

  112. Stein T, Cosimo E, Smith P, Simon R, Price K, Baird L, et al. Reelin expression in breast tumours is associated with increased survival and is controlled by promoter methylation. Breast Cancer Res. 2008;10:P25.

    Article  PubMed Central  Google Scholar 

  113. Castellano E, Molina-Arcas M, Krygowska AA, East P, Warne P, Nicol A, et al. RAS signalling through PI3-Kinase controls cell migration via modulation of Reelin expression. Nat Commun. 2016;7:11245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Carvajal AE, Serrano-Morales JM, Vazquez-Carretero MD, Garcia-Miranda P, Calonge ML, Peral MJ, et al. Reelin protects from colon pathology by maintaining the intestinal barrier integrity and repressing tumorigenic genes. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2126–34.

    Article  CAS  PubMed  Google Scholar 

  115. Vignot S, Lefebvre C, Frampton GM, Meurice G, Yelensky R, Palmer G, et al. Comparative analysis of primary tumour and matched metastases in colorectal cancer patients: evaluation of concordance between genomic and transcriptional profiles. Eur J Cancer. 2015;51:791–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David W. Craig for critical reading of the paper.

Funding

This work was partly supported by National Cancer Institute (grant numbers P30CA014089 and R01CA241137), Gloria Borges WunderGlo Foundation, Dhont Family Foundation, Gene Gregg Pancreas Research Fund, San Pedro Peninsula Cancer Guild, Daniel Butler Research Fund, V foundation for cancer research, Victoria and Philip Wilson Research Fund, Fong research project, Ming Hsieh research fund, Boyd and Elsie Welin Professorship to JCS and USC Trustee Tsai family fund to JCS. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

FB drafted the paper with the aid of CS and AL. HJL supervised the paper. All authors directly provided their contribution, read and approved the final paper.

Corresponding author

Correspondence to Heinz-Josef Lenz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battaglin, F., Jayachandran, P., Strelez, C. et al. Neurotransmitter signaling: a new frontier in colorectal cancer biology and treatment. Oncogene 41, 4769–4778 (2022). https://doi.org/10.1038/s41388-022-02479-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02479-4

This article is cited by

Search

Quick links