Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The NQO1/p53/SREBP1 axis promotes hepatocellular carcinoma progression and metastasis by regulating Snail stability

Abstract

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, and its abnormal metabolism affects the survival and prognosis of patients. Recent studies have found that NAD(P)H quinone oxidoreductase-1 (NQO1) played an important role in tumor metabolism and malignant progression. However, the molecular mechanisms by which NQO1 regulates lipid metabolism during HCC progression remain unclear. In this study, bioinformatics analysis and immunohistochemical results showed that NQO1 was highly expressed in HCC tissues and its high expression was closely related to the poor prognosis of HCC patients. Overexpression of NQO1 promoted the cell proliferation, epithelial-to-mesenchymal transition (EMT) process, and angiogenesis of HCC cells. Luciferase reporter assay further revealed that NQO1/p53 could induce the transcriptional activity of SREBP1, consequently regulating HCC progression through lipid anabolism. In addition, Snail protein was stabilized by NQO1/p53/SREBP1 axis and triggered the EMT process, and participated in the regulatory role of NQO1/p53/SREBP1 axis in HCC. Together, these data indicated that NQO1/SREBP1 axis promoted the progression and metastasis of HCC, and might be a potential therapeutic target for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NQO1 expression was upregulated in HCC tissues and associated with poor outcomes.
Fig. 2: NQO1 accelerated HCC cell proliferation and inhibited autophagy in vitro, and promoted tumorigenesis in vivo.
Fig. 3: NQO1 accelerated the metastasis of HCC cells via EMT process in vitro and in vivo.
Fig. 4: NQO1 promoted angiogenesis in HCC cells, and accelerated the growth and migration of HUVECs.
Fig. 5: NQO1 regulated lipid anabolism in HCC cells.
Fig. 6: NQO1/p53 regulated HCC progression and metastasis through SREBP1.
Fig. 7: NQO1/p53/SREBP1 posttranslationally regulated Snail protein stability in HCC.
Fig. 8: NQO1/SREBP1 axis might be a reliable prognostic biomarker for patients with HCC.

Similar content being viewed by others

References

  1. Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol. 2020;72:250–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Long MT, Noureddin M, Lim JK AGA Clinical Practice Update: Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Lean Individuals: Expert Review. Gastroenterology. 2022: S0016-5085(22)00628-X.

  3. Duan F, Wu H, Jia D, Wu W, Ren S, Wang L, et al. O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. J Hepatol. 2018;68:1191–202.

    Article  CAS  PubMed  Google Scholar 

  4. Llovet JM, De Baere T, Kulik L, Haber PK, Greten TF, Meyer T, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:293–313.

    Article  CAS  PubMed  Google Scholar 

  5. Xing R, Gao J, Cui Q, Wang Q. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma. Front Immunol. 2021;12:783236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2017;541:41–45.

    Article  CAS  PubMed  Google Scholar 

  7. Yin F, Sharen G, Yuan F, Peng Y, Chen R, Zhou X, et al. TIP30 regulates lipid metabolism in hepatocellular carcinoma by regulating SREBP1 through the Akt/mTOR signaling pathway. Oncogenesis 2017;6:e347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol. 2019;16:748–66.

    Article  CAS  PubMed  Google Scholar 

  9. Xu D, Wang Z, Xia Y, Shao F, Xia W, Wei Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis. Nature 2020;580:530–5.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar DP, Santhekadur PK, Seneshaw M, Mirshahi F, Uram-Tuculescu C, Sanyal AJ. A Regulatory Role of Apoptosis Antagonizing Transcription Factor in the Pathogenesis of Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma. Hepatology 2019;69:1520–34.

    Article  CAS  PubMed  Google Scholar 

  11. Han J, Li E, Chen L, Zhang Y, Wei F, Liu J, et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature 2015;524:243–6.

    Article  CAS  PubMed  Google Scholar 

  12. Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16:732–49.

    Article  PubMed  Google Scholar 

  13. Fagerholm R, Hofstetter B, Tommiska J, Aaltonen K, Vrtel R, Syrjäkoski K, et al. NAD(P)H: quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet. 2008;40:844–53.

    Article  CAS  PubMed  Google Scholar 

  14. Lajin B, Alachkar A. The NQO1 polymorphism C609T (Pro187Ser) and cancer susceptibility: a comprehensive meta-analysis. Br J Cancer. 2013;109:1325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Y, Zhang Y, Wu Q, Cui X, Lin Z, Liu S, et al. Clinical implications of high NQO1 expression in breast cancers. J Exp Clin Cancer Res. 2014;33:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oh ET, Kim JW, Kim JM, Kim SJ, Lee JS, Hong SS, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun. 2016;7:13593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma Y, Kong J, Yan G, Ren X, Jin D, Jin T, et al. NQO1 overexpression is associated with poor prognosis in squamous cell carcinoma of the uterine cervix. BMC Cancer. 2014;14:414.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao W, Jiang L, Fang T, Fang F, Liu Y, Zhao Y, et al. β-Lapachone Selectively Kills Hepatocellular Carcinoma Cells by Targeting NQO1 to Induce Extensive DNA Damage and PARP1 Hyperactivation. Front Oncol. 2021;11:747282.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin L, Sun J, Tan Y, Li Z, Kong F, Shen Y, et al. Prognostic implication of NQO1 overexpression in hepatocellular carcinoma. Hum Pathol. 2017;69:31–37.

    Article  CAS  PubMed  Google Scholar 

  20. Dimri M, Humphries A, Laknaur A, Elattar S, Lee TJ, Sharma A, et al. NAD(P)H Quinone Dehydrogenase 1 Ablation Inhibits Activation of the Phosphoinositide 3-Kinase/Akt Serine/Threonine Kinase and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathways and Blocks Metabolic Adaptation in Hepatocellular Carcinoma. Hepatology 2020;71:549–68.

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Zhu G, Dong B, Piao J, Chen L, Lin Z. The NQO1/PKLR axis promotes lymph node metastasis and breast cancer progression by modulating glycolytic reprogramming. Cancer Lett. 2019;453:170–83.

    Article  CAS  PubMed  Google Scholar 

  22. Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, et al. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell Death Dis. 2020;11:55.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, et al. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res. 2019;38:173.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pasquier J, Ghiabi P, Chouchane L, Razzouk K, Rafii S, Rafii A. Angiocrine endothelium: from physiology to cancer. J Transl Med. 2020;18:52.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheng C, Geng F, Cheng X, Guo D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond). 2018;38:27.

    Article  Google Scholar 

  26. Zhang N, Zhang H, Liu Y, Su P, Zhang J, Wang X, et al. SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2. Cell Death Differ. 2019;26:843–59.

    Article  CAS  PubMed  Google Scholar 

  27. Wu X, Li X, Li Z, Yu Y, You Q, Zhang X. Discovery of nonquinone substrates for NAD(P)H: quinone oxidoreductase 1 (NQO1) as effective intracellular ROS generators for the treatment of drug-resistant non-small-cell lung cancer. J Med Chem. 2018;61:11280–97.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H: Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem. 2018;61:6983–7003.

    Article  CAS  PubMed  Google Scholar 

  29. Lewis AM, Ough M, Du J, Tsao MS, Oberley LW, Cullen JJ. Targeting NAD(P)H:Quinone Oxidoreductase (NQO1) in Pancreatic Cancer. Mol Carcinog. 2017;56:1825–34.

    Article  CAS  PubMed  Google Scholar 

  30. Luo S, Lei K, Xiang D, Ye K. NQO1 Is Regulated by PTEN in Glioblastoma, Mediating Cell Proliferation and Oxidative Stress. Oxid Med Cell Longev. 2018;2018:9146528.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shimokawa M, Yoshizumi T, Itoh S, Iseda N, Sakata K, Yugawa K, et al. Modulation of Nqo1 activity intercepts anoikis resistance and reduces metastatic potential of hepatocellular carcinoma. Cancer Sci. 2020;111:1228–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patiño-Morales CC, Soto-Reyes E, Arechaga-Ocampo E, Ortiz-Sánchez E, Antonio-Véjar V, Pedraza-Chaverri J, et al. Curcumin stabilizes p53 by interaction with NAD(P)H:quinone oxidoreductase 1 in tumor-derived cell lines. Redox Biol. 2020;28:101320.

    Article  PubMed  Google Scholar 

  33. Kim J, Yu L, Chen W, Xu Y, Wu M, Todorova D, et al. Wild-Type p53 Promotes Cancer Metabolic Switch by Inducing PUMA-Dependent Suppression of Oxidative Phosphorylation. Cancer Cell. 2019;35:191–203.

    Article  CAS  PubMed  Google Scholar 

  34. Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. J Mol Cell Biol. 2019;11:284–92.

    Article  CAS  PubMed  Google Scholar 

  35. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Piscaglia F, Svegliati-Baroni G, Barchetti A, Pecorelli A, Marinelli S, Tiribelli C, et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study. Hepatology 2016;63:827–38.

    Article  PubMed  Google Scholar 

  37. Wang C, Tong Y, Wen Y, Cai J, Guo H, Huang L, et al. Hepatocellular Carcinoma-Associated Protein TD26 Interacts and Enhances Sterol Regulatory Element-Binding Protein 1 Activity to Promote Tumor Cell Proliferation and Growth. Hepatology 2018;68:1833–50.

    Article  CAS  PubMed  Google Scholar 

  38. Santos PM, Menk AV, Shi J, Tsung A, Delgoffe GM, Butterfield LH. Tumor-Derived α-Fetoprotein Suppresses Fatty Acid Metabolism and Oxidative Phosphorylation in Dendritic Cells. Cancer Immunol Res. 2019;7:1001–12.

    Article  CAS  PubMed  Google Scholar 

  39. Maan M, Peters JM, Dutta M, Patterson AD. Lipid metabolism and lipophagy in cancer. Biochem Biophys Res Commun. 2018;504:582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deng Z, Lim J, Wang Q, Purtell K, Wu S, Palomo GM, et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 2020;16:917–31.

    Article  CAS  PubMed  Google Scholar 

  41. Guo D, Bell EH, Mischel P, Chakravarti A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Des. 2014;20:2619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, et al. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 2016;35:748–60.

    Article  CAS  PubMed  Google Scholar 

  43. Karlsson MC, Gonzalez SF, Welin J, Fuxe J. Epithelialmesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol. 2017;11:781–91.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lyu J, Yang EJ, Head SA, Ai N, Zhang B, Wu C, et al. Astemizole Inhibits mTOR Signaling and Angiogenesis by Blocking Cholesterol Trafficking. Int J Biol Sci. 2018;14:1175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Katikireddy KR, White TL, Miyajima T, Vasanth S, Raoof D, Chen Y, et al. NQO1 downregulation potentiates menadione-induced endothelial-mesenchymal transition during rosette formation in Fuchs endothelial corneal dystrophy. Free Radic Biol Med. 2018;116:19–30.

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Wu Z, Han D, Wei C, Liang Y, Jiang T, et al. Mesencephalic Astrocyte-Derived Neurotrophic Factor Inhibits Liver Cancer Through Small Ubiquitin-Related Modifier (SUMO)ylation-Related Suppression of NF-κB/Snail Signaling Pathway and Epithelial-Mesenchymal Transition. Hepatology 2020;71:1262–78.

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Li N, Han A, Wang Y, Lin Z, Yang Y. Ezrin promotes hepatocellular carcinoma progression by modulating glycolytic reprogramming. Cancer Sci. 2020;111:4061–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Projects of Science and Technology Department of Jilin Province (No.210101207, No.202002021JC), the National Natural Science Foundation of China (No.31760313), the Fund of Tumen River Scholar Project.

Author information

Authors and Affiliations

Authors

Contributions

Z-HL and YY were involved in conception and design of the study, X-YW and YL performed in vitro experiments and drafting of the manuscript; Y.L., C-XT, and RX performed in vivo experiments and data analysis; X-YW, L-YF, and A-NH were involved in performing experiments and statistical analysis; Z-HL, L-YC, and YY were manuscript revisions. All authors listed approved the final version of the manuscript.

Corresponding author

Correspondence to Zhenhua Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal experiments were conducted in accordance with the regulations of the Institutional Animal Care and Use Committee with the approval of the Ethics Committee of Yanbian University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, Y., Han, A. et al. The NQO1/p53/SREBP1 axis promotes hepatocellular carcinoma progression and metastasis by regulating Snail stability. Oncogene 41, 5107–5120 (2022). https://doi.org/10.1038/s41388-022-02477-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02477-6

This article is cited by

Search

Quick links