Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CXCR4 and CXCR7 signaling promotes tumor progression and obesity-associated epithelial-mesenchymal transition in prostate cancer cells

Abstract

Obesity is associated with increased prostate cancer (PCa) progression and higher mortality, however, the mechanism(s) remain still unclear. Here, we investigated signaling by the ASC-secreted chemokine CXCL12 in a mouse allograft model of PCa and in HiMyc mice in the context of diet-induced obesity. Treatment of mice with CXCR4 antagonist inhibited CXCL12-induced signaling pathways, tumor growth and EMT in HMVP2 allograft tumors. Similar results were obtained following prostate epithelium-specific deletion of CXCR4 in HiMyc mice. We also show that CXCR4 signaling regulates expression of JMJD2A histone demethylase and histone methylation which is modulated by AMD3100. Importantly, treatment with a CXCR7 antagonist also inhibited allograft tumor growth and EMT. The current results demonstrate that both CXCR4 and CXCR7 play an important role in cancer progression and establish CXCL12 signaling pathways, activated in obesity, as potential targets for PCa intervention. In addition, other factors secreted by ASCs, may also contribute to cancer aggressiveness in obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunofluorescence analysis of representative HMVP2 allograft tumor tissue sections from mice on control and DIO diets.
Fig. 2: CXCR4 antagonist (AMD3100) reduces HMVP2 allograft tumor growth and progression.
Fig. 3: CXCR4 knockout suppresses prostate cancer progression in obese HiMyc mice.
Fig. 4: Modulation of EMT, proliferation and stem cell markers by CXCR4 knock out in obese HiMyc mice.
Fig. 5: Combination of AMD3100 and D-CAN reduces HMVP2 allograft tumor growth.
Fig. 6: CXCR7 antagonist (CCX771) reduced HMVP2 PCa tumor growth.

Similar content being viewed by others

References

  1. Bhurosy T, Jeewon R. Overweight and obesity epidemic in developing countries: a problem with diet, physical activity, or socioeconomic status? Scientific World Journal. 2014;2014:964236.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fryar CD, Carroll MD, Ogden CL. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2015–2016. NCHS Health E-Stats. 2018.

  3. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief. 2017;1–8.

  4. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.

    Article  PubMed  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  6. Wright ME, Chang SC, Schatzkin A, Albanes D, Kipnis V, Mouw T, et al. Prospective study of adiposity and weight change in relation to prostate cancer incidence and mortality. Cancer 2007;109:675–84.

    Article  PubMed  Google Scholar 

  7. Gong Z, Agalliu I, Lin DW, Stanford JL, Kristal AR. Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer 2007;109:1192–202.

    Article  PubMed  Google Scholar 

  8. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998;279:563–6.

    Article  CAS  PubMed  Google Scholar 

  9. Saglam K, Aydur E, Yilmaz M, Goktas S. Leptin influences cellular differentiation and progression in prostate cancer. J Urol. 2003;169:1308–11.

    Article  CAS  PubMed  Google Scholar 

  10. Silva KR, Cortes I, Liechocki S, Carneiro JR, Souza AA, Borojevic R, et al. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots. PLoS ONE. 2017;12:e0174115.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Laurent V, Guerard A, Mazerolles C, Le Gonidec S, Toulet A, Nieto L, et al. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun. 2016;7:10230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kolonin MG, DiGiovanni J. The role of adipose stroma in prostate cancer aggressiveness. Transl Androl Urol. 2019;8:S348–S350.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Su F, Ahn S, Saha A, DiGiovanni J, Kolonin MG. Adipose stromal cell targeting suppresses prostate cancer epithelial-mesenchymal transition and chemoresistance. Oncogene 2019;38:1979–88.

    Article  CAS  PubMed  Google Scholar 

  14. Daquinag AC, Zhang Y, Amaya-Manzanares F, Simmons PJ, Kolonin MG. An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell. 2011;9:74–86.

    Article  CAS  PubMed  Google Scholar 

  15. Daquinag AC, Tseng C, Salameh A, Zhang Y, Amaya-Manzanares F, Dadbin A, et al. Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death Differ. 2015;22:351–63.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Daquinag A, Traktuev DO, Amaya-Manzanares F, Simmons PJ, March KL, et al. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res. 2009;69:5259–66.

    Article  CAS  PubMed  Google Scholar 

  17. Blando J, Moore T, Hursting S, Jiang G, Saha A, Beltran L, et al. Dietary energy balance modulates prostate cancer progression in Hi-Myc mice. Cancer Prev Res. 2011;4:2002–14.

    Article  CAS  Google Scholar 

  18. Saha A, Ahn S, Blando J, Su F, Kolonin MG, DiGiovanni J. Proinflammatory CXCL12-CXCR4/CXCR7 signaling axis drives Myc-induced prostate cancer in obese mice. Cancer Res. 2017;77:5158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi Y, Riese DJ 2nd, Shen J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol. 2020;11:574667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luker KE, Luker GD. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett. 2006;238:30–41.

    Article  CAS  PubMed  Google Scholar 

  21. Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med. 2003;167:1676–86.

    Article  PubMed  Google Scholar 

  22. Singh S, Singh UP, Grizzle WE, Lillard JW Jr. CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Investig. 2004;84:1666–76.

    Article  CAS  PubMed  Google Scholar 

  23. Yasumoto K, Koizumi K, Kawashima A, Saitoh Y, Arita Y, Shinohara K, et al. Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res. 2006;66:2181–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kim D, Kim J, Yoon JH, Ghim J, Yea K, Song P, et al. CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice. Diabetologia 2014;57:1456–65.

    Article  CAS  PubMed  Google Scholar 

  25. Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, et al. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 1995;28:495–500.

    Article  CAS  PubMed  Google Scholar 

  26. Su F, Daquinag AC, Ahn S, Saha A, Dai Y, Zhao Z, et al. Progression of prostate carcinoma is promoted by adipose stromal cell-secreted CXCL12 signaling in prostate epithelium. NPJ Precis Oncol. 2021;5:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao H, Guo L, Zhao H, Zhao J, Weng H, Zhao B. CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget 2015;6:5022–40.

    Article  PubMed  Google Scholar 

  28. Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J. 2004;18:1240–2.

    Article  CAS  PubMed  Google Scholar 

  29. Cui K, Zhao W, Wang C, Wang A, Zhang B, Zhou W, et al. The CXCR4-CXCL12 pathway facilitates the progression of pancreatic cancer via induction of angiogenesis and lymphangiogenesis. J Surg Res. 2011;171:143–50.

    Article  CAS  PubMed  Google Scholar 

  30. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16:2927–31.

    Article  CAS  PubMed  Google Scholar 

  31. Scala S. Molecular pathways: targeting the CXCR4-CXCL12 axis–untapped potential in the tumor microenvironment. Clin Cancer Res. 2015;21:4278–85.

    Article  CAS  PubMed  Google Scholar 

  32. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med. 1996;184:1101–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010;29:709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hernandez L, Magalhaes MA, Coniglio SJ, Condeelis JS, Segall JE. Opposing roles of CXCR4 and CXCR7 in breast cancer metastasis. Breast Cancer Res. 2011;13:R128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saha A, Blando J, Fernandez I, Kiguchi K, DiGiovanni J. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo. Oncotarget 2016;7:25194–207.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dubrovska A, Elliott J, Salamone RJ, Telegeev GD, Stakhovsky AE, Schepotin IB, et al. CXCR4 expression in prostate cancer progenitor cells. PLoS ONE. 2012;7:e31226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trautmann F, Cojoc M, Kurth I, Melin N, Bouchez LC, Dubrovska A, et al. CXCR4 as biomarker for radioresistant cancer stem cells. Int J Radiat Biol. 2014;90:687–99.

    Article  CAS  PubMed  Google Scholar 

  38. Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 2007;67:3153–61.

    Article  CAS  PubMed  Google Scholar 

  39. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5:1032–8.

    Article  CAS  PubMed  Google Scholar 

  40. Zabel BA, Wang Y, Lewen S, Berahovich RD, Penfold ME, Zhang P, et al. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol. 2009;183:3204–11.

    Article  CAS  PubMed  Google Scholar 

  41. Singh AK, Arya RK, Trivedi AK, Sanyal S, Baral R, Dormond O, et al. Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine Growth Factor Rev. 2013;24:41–49.

    Article  CAS  PubMed  Google Scholar 

  42. Dickerman BA, Torfadottir JE, Valdimarsdottir UA, Giovannucci E, Wilson KM, Aspelund T, et al. Body fat distribution on computed tomography imaging and prostate cancer risk and mortality in the AGES-Reykjavik study. Cancer 2019;125:2877–85.

    PubMed  Google Scholar 

  43. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Investig. 2011;121:2094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Himbert C, Delphan M, Scherer D, Bowers LW, Hursting S, Ulrich CM. Signals from the adipose microenvironment and the obesity-cancer link-a systematic review. Cancer Prev Res. 2017;10:494–506.

    Article  CAS  Google Scholar 

  45. Bellows CF, Zhang Y, Chen J, Frazier ML, Kolonin MG. Circulation of progenitor cells in obese and lean colorectal cancer patients. Cancer Epidemiol Biomark Prev. 2011;20:2461–8.

    Article  CAS  Google Scholar 

  46. Su F, Wang X, Pearson T, Lee J, Krishnamurthy S, Ueno NT, et al. Ablation of stromal cells with a targeted proapoptotic peptide suppresses cancer chemotherapy resistance and metastasis. Mol Ther Oncolytics. 2020;18:579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lengyel E, Makowski L, DiGiovanni J, Kolonin MG. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer. 2018;4:374–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang J, Tang H, Huang J, An H. Upregulation of CXCR7 is associated with poor prognosis of prostate cancer. Med Sci Monit. 2018;24:5185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, Pienta KJ, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2008;283:4283–94.

    Article  CAS  PubMed  Google Scholar 

  50. Mochizuki H, Matsubara A, Teishima J, Mutaguchi K, Yasumoto H, Dahiya R, et al. Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis. Biochem Biophys Res Commun. 2004;320:656–63.

    Article  CAS  PubMed  Google Scholar 

  51. De Clercq E. Mozobil(R) (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother. 2019;27:2040206619829382.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 2016;32:42–56.

    Article  CAS  PubMed  Google Scholar 

  53. Stillman B. Histone modifications: insights into their influence on gene expression. Cell 2018;175:6–9.

    Article  CAS  PubMed  Google Scholar 

  54. Couture JF, Collazo E, Ortiz-Tello PA, Brunzelle JS, Trievel RC. Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nat Struct Mol Biol. 2007;14:689–95.

    Article  CAS  PubMed  Google Scholar 

  55. Kim TD, Jin F, Shin S, Oh S, Lightfoot SA, Grande JP, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Investig. 2016;126:706–20.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Song ZY, Wang F, Cui SX, Gao ZH, Qu XJ. CXCR7/CXCR4 heterodimer-induced histone demethylation: a new mechanism of colorectal tumorigenesis. Oncogene 2019;38:1560–75.

    Article  CAS  PubMed  Google Scholar 

  57. Wang F, Li Y, Shan F, Zhang Q, Wang L, Sheng B, et al. Upregulation of JMJD2A promotes migration and invasion in bladder cancer through regulation of SLUG. Oncol Rep. 2019;42:1431–40.

    CAS  PubMed  Google Scholar 

  58. Li M, Cheng J, Ma Y, Guo H, Shu H, Huang H, et al. The histone demethylase JMJD2A promotes glioma cell growth via targeting Akt-mTOR signaling. Cancer Cell Int. 2020;20:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Wang Y, Xie Z, Hu H. JMJD2A facilitates growth and inhibits apoptosis of cervical cancer cells by downregulating tumor suppressor miR4915p. Mol Med Rep. 2019;19:2489–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang N, Chen T, Wang L, Liu R, Niu Y, Sun L, et al. CXCR4 mediates matrix stiffness-induced downregulation of UBTD1 driving hepatocellular carcinoma progression via YAP signaling pathway. Theranostics 2020;10:5790–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang X, Cao Y, Zhang S, Chen Z, Fan L, Shen X, et al. Stem cell autocrine CXCL12/CXCR4 stimulates invasion and metastasis of esophageal cancer. Oncotarget 2017;8:36149–60.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tian Y, Song Y, Bai W, Ma X, Ren Z. CXCR4 knockdown inhibits the growth and invasion of nasopharyngeal cancer stem cells. Oncol Lett. 2017;13:2253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ablett MP, O’Brien CS, Sims AH, Farnie G, Clarke RB. A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity. Oncotarget 2014;5:599–612.

    Article  PubMed  Google Scholar 

  64. Balic A, Sorensen MD, Trabulo SM, Sainz B Jr., Cioffi M, Vieira CR, et al. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol Cancer Ther. 2014;13:1758–71.

    Article  CAS  PubMed  Google Scholar 

  65. Mimeault M, Batra SK. Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med. 2011;17:949–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moore T, Beltran L, Carbajal S, Strom S, Traag J, Hursting SD, et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prev Res. 2008;1:65–76.

    Article  CAS  Google Scholar 

  67. Nunez NP, Perkins SN, Smith NC, Berrigan D, Berendes DM, Varticovski L, et al. Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr Cancer. 2008;60:534–41.

    Article  CAS  PubMed  Google Scholar 

  68. Nunez NP, Carpenter CL, Perkins SN, Berrigan D, Jaque SV, Ingles SA, et al. Extreme obesity reduces bone mineral density: complementary evidence from mice and women. Obesity 2007;15:1980–7.

    Article  CAS  PubMed  Google Scholar 

  69. Daquinag AC, Dadbin A, Snyder B, Wang X, Sahin AA, Ueno NT, et al. Non-glycanated decorin is a drug target on human adipose stromal cells. Mol Ther Oncolytics. 2017;6:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 2004;64:2270–305.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao W, Sachsenmeier K, Zhang L, Sult E, Hollingsworth RE, Yang H. A new bliss independence model to analyze drug combination data. J Biomol Screen. 2014;19:817–21.

    Article  PubMed  Google Scholar 

  72. Kshattry S, Saha A, Gries P, Tiziani S, Stone E, Georgiou G, et al. Enzyme-mediated depletion of l-cyst(e)ine synergizes with thioredoxin reductase inhibition for suppression of pancreatic tumor growth. NPJ Precis Oncol. 2019;3:16.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Saha A, Blando J, Tremmel L, DiGiovanni J. Effect of metformin, rapamycin and their combination on growth and progression of prostate tumors in HiMyc mice. Cancer Prev Res. 2015;8:597–606.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Steve Carbajal for his significant and extensive assistance to various aspects of this study. This study was supported by NIH grant R01 CA196259 (to JD and MGK).

Author information

Authors and Affiliations

Authors

Contributions

SA, AS, MK, RC, and JD conceived and designed the experiments. SA, AS, and RC performed the experiments. SA, AS, MK, and JD analyzed and interpreted the data and wrote the paper. JD provided administration and material support. All authors read and approved the final paper.

Corresponding author

Correspondence to John DiGiovanni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S., Saha, A., Clark, R. et al. CXCR4 and CXCR7 signaling promotes tumor progression and obesity-associated epithelial-mesenchymal transition in prostate cancer cells. Oncogene 41, 4633–4644 (2022). https://doi.org/10.1038/s41388-022-02466-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02466-9

This article is cited by

Search

Quick links