Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CEP63 upregulates YAP1 to promote colorectal cancer progression through stabilizing RNA binding protein FXR1

Abstract

Abnormal regulation of centrosome components can induce chromosome instability and tumorigenesis. Centrosomal protein 63 (CEP63) is a vital member for assembling centrosome. Yet, the involvement of CEP63 in cancer pathogenesis remains unclear. Here we identify CEP63 as an important mediator for RNA-binding proteins (RBPs) to facilitate regulation on their RNA targets in colorectal cancer (CRC). We demonstrate that CEP63 protein is upregulated in a large cohort of colorectal cancer tissues and predicts poor prognosis, and USP36 is identified for stabilizing CEP63 by enhancing its K48-dependent deubiquitination. CEP63 overexpression promotes the proliferation and tumor growth of CRC cells in vitro and in vivo. Furthermore, we find that CEP63 can promote cancer stem-like cell properties by enhancing YAP1 expression through binding with and inhibiting the K63-ubiquitylation degradation of RBP FXR1 in CRC cells. Importantly, we further verify that the KH domain of FXR1 is necessary for the interaction between CEP63 and FXR1. Moreover, microtube motor proteins can form a complex with CEP63 and FXR1 to mediate the regulation of FXR1 on RNA targets. Additionally, we also confirm that CEP63 can bind and regulate multiple RBPs. In conclusion, our findings unveil an unrecognized CEP63/RBPs/RNA axis that CEP63 may perform as an adapter facilitating the formation of RBPs complex to regulate RNA progression and discover the role of CEP63 involved in signal transduction and RNA regulation, providing potential therapeutic target for CRC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CEP63 is highly expressed in CRC patient tissues and is associated with a poor prognosis.
Fig. 2: USP36 inhibits K48-linked polyubiquitination of CEP63.
Fig. 3: CEP63 promotes colorectal cancer stem cell phenotype.
Fig. 4: YAP1 silencing inhibits CEP63-induced colorectal cancer stem cell phenotype.
Fig. 5: FXR1 positively impacts the biological function of CEP63.
Fig. 6: CEP63 binds with the KH domain of FXR1.
Fig. 7: CEP63 deubiquitinates and stabilizes FXR1.
Fig. 8: FXR1 interacts with YAP1 mRNA and stabilizes it.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Disco. 2022;12:31–46.

    Article  CAS  Google Scholar 

  2. Dumont J, Desai A. Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends Cell Biol. 2012;22:241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farina F, Gaillard J, Guerin C, Coute Y, Sillibourne J, Blanchoin L, et al. The centrosome is an actin-organizing centre. Nat Cell Biol. 2016;18:65–75.

    Article  CAS  PubMed  Google Scholar 

  4. Conduit PT, Wainman A, Raff JW. Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol. 2015;16:611–24.

    Article  CAS  PubMed  Google Scholar 

  5. Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol. 2005;15:303–11.

    Article  CAS  PubMed  Google Scholar 

  6. Lukinavicius G, Lavogina D, Orpinell M, Umezawa K, Reymond L, Garin N, et al. Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Curr Biol. 2013;23:265–70.

    Article  CAS  PubMed  Google Scholar 

  7. Brown NJ, Marjanovic M, Luders J, Stracker TH, Costanzo V. Cep63 and cep152 cooperate to ensure centriole duplication. PLoS ONE. 2013;8:e69986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim TS, Zhang L, Il AJ, Meng L, Chen Y, Lee E, et al. Molecular architecture of a cylindrical self-assembly at human centrosomes. Nat Commun. 2019;10:1151.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sir J, Barr AR, Nicholas AK, Carvalho OP, Khurshid M, Sossick A, et al. A primary microcephaly protein complex forms a ring around parental centrioles. Nat Genet. 2011;43:1147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loffler H, Fechter A, Matuszewska M, Saffrich R, Mistrik M, Marhold J, et al. Cep63 recruits Cdk1 to the centrosome: implications for regulation of mitotic entry, centrosome amplification, and genome maintenance. Cancer Res. 2011;71:2129–39.

    Article  PubMed  Google Scholar 

  11. Marjanović M, Sánchez-Huertas C, Terré B, Gómez R, Scheel JF, Pacheco S, et al. CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nat Commun. 2015;6:7676.

  12. Watanabe Y, Honda S, Konishi A, Arakawa S, Murohashi M, Yamaguchi H, et al. Autophagy controls centrosome number by degrading Cep63. Nat Commun. 2016;7:13508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Honda S, Shimizu S. Autophagy controls centrosome number. Oncotarget 2017;8:14277–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cai Z, Chen H, Bai J, Zheng Y, Ma J, Cai X, et al. Copy number variations of CEP63, FOSL2 and PAQR6 serve as novel signatures for the prognosis of bladder cancer. Front Oncol. 2021;11:674933.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  16. Zhang J, Ren P, Xu D, Liu X, Liu Z, Zhang C, et al. Human UTP14a promotes colorectal cancer progression by forming a positive regulation loop with c-Myc. Cancer Lett. 2019;440-441:106–15.

    Article  CAS  PubMed  Google Scholar 

  17. Yan Y, Xu Z, Huang J, Guo G, Gao M, Kim W, et al. The deubiquitinase USP36 Regulates DNA replication stress and confers therapeutic resistance through PrimPol stabilization. Nucleic Acids Res. 2020;48:12711–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwon YT, Ciechanover A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci. 2017;42:873–86.

    Article  CAS  PubMed  Google Scholar 

  19. Xu N, Gulick J, Osinska H, Yu Y, McLendon PM, Shay-Winkler K, et al. Ube2v1 positively regulates protein aggregation by modulating ubiquitin proteasome system performance partially through K63 ubiquitination. Circ Res. 2020;126:907–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong AW, Meng Z, Guan KL. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol. 2016;13:324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    Article  PubMed  Google Scholar 

  22. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.

    Article  CAS  PubMed  Google Scholar 

  23. Fallmann J, Sedlyarov V, Tanzer A, Kovarik P, Hofacker IL. AREsite2: an enhanced database for the comprehensive investigation of AU/GU/U-rich elements. Nucleic Acids Res. 2016;44:D90–5.

    Article  CAS  PubMed  Google Scholar 

  24. Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 2007;128:1105–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Say E, Tay H, Zhao Z, Baskaran Y, Li R, Lim L, et al. A functional requirement for PAK1 binding to the KH(2) domain of the fragile X protein-related FXR1. Mol Cell. 2010;38:236–49.

    Article  CAS  PubMed  Google Scholar 

  26. Dockendorff TC, Labrador M. The fragile X protein and genome function. Mol Neurobiol. 2019;56:711–21.

    Article  CAS  PubMed  Google Scholar 

  27. Eliscovich C, Buxbaum AR, Katz ZB, Singer RH. mRNA on the move: the road to its biological destiny. J Biol Chem. 2013;288:20361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giampetruzzi A, Danielson EW, Gumina V, Jeon M, Boopathy S, Brown RH, et al. Modulation of actin polymerization affects nucleocytoplasmic transport in multiple forms of amyotrophic lateral sclerosis. Nat Commun. 2019;10:3827.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wei Z, Kim TS, Ahn JI, Meng L, Chen Y, Ryu EK, et al. Requirement of the Cep57-Cep63 Interaction for Proper Cep152 recruitment and centriole duplication. Mol Cell Biol. 2020;40:e00535–19.

  30. Jayaraman D, Kodani A, Gonzalez DM, Mancias JD, Mochida GH, Vagnoni C, et al. Microcephaly proteins Wdr62 and Aspm define a mother centriole complex regulating centriole biogenesis, apical complex, and cell fate. Neuron 2016;92:813–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng F, Xu J, Cui B, Liang Q, Zeng S, He B, et al. Oncogenic AURKA-enhanced N(6)-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res. 2021;31:345–61.

    Article  CAS  PubMed  Google Scholar 

  32. Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Disco. 2018;17:57–78.

    Article  CAS  Google Scholar 

  33. Rowinsky EK, Paner A, Berdeja JG, Paba-Prada C, Venugopal P, Porkka K, et al. Phase 1 study of the protein deubiquitinase inhibitor VLX1570 in patients with relapsed and/or refractory multiple myeloma. Invest N Drugs. 2020;38:1448–53.

    Article  CAS  Google Scholar 

  34. Liu Q, Sheng W, Ma Y, Zhen J, Roy S, Alvira JC, et al. USP36 protects proximal tubule cells from ischemic injury by stabilizing c-Myc and SOD2. Biochem Biophys Res Commun. 2019;513:502–8.

    Article  CAS  PubMed  Google Scholar 

  35. Mondal T, Juvvuna PK, Kirkeby A, Mitra S, Kosalai ST, Traxler L, et al. Sense-antisense lncRNA pair encoded by locus 6p22.3 determines neuroblastoma susceptibility via the USP36-CHD7-SOX9 regulatory axis. Cancer Cell. 2018;33:417–34.

    Article  CAS  PubMed  Google Scholar 

  36. Madiraju C, Novack JP, Reed JC, Matsuzawa SI. K63 ubiquitination in immune signaling. Trends Immunol. 2022;43:148–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohtake F, Tsuchiya H, Saeki Y, Tanaka K. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc Natl Acad Sci USA. 2018;115:E1401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uchida Y, Chiba T, Kurimoto R, Asahara H. Post-transcriptional regulation of inflammation by RNA-binding proteins via cis-elements of mRNAs. J Biochem. 2019;166:375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herman AB, Vrakas CN, Ray M, Kelemen SE, Sweredoski MJ, Moradian A, et al. FXR1 is an IL-19-responsive RNA-binding protein that destabilizes pro-inflammatory transcripts in vascular smooth muscle cells. Cell Rep. 2018;24:1176–89.

    Article  PubMed  Google Scholar 

  40. Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020;52:400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frederick MI, Heinemann IU. Regulation of RNA stability at the 3’ end. Biol Chem. 2021;402:425–31.

    Article  CAS  PubMed  Google Scholar 

  42. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.

    Article  CAS  PubMed  Google Scholar 

  43. Santiago TC, Bettany AJ, Purvis IJ, Brown AJ. Messenger RNA stability in Saccharomyces cerevisiae: the influence of translation and poly(A) tail length. Nucleic Acids Res. 1987;15:2417–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Richards J, Belasco JG. Riboswitch control of bacterial RNA stability. Mol Microbiol. 2021;116:361–5.

    Article  CAS  PubMed  Google Scholar 

  45. Ke WL, Huang ZW, Peng CL, Ke YP. m(6)A demethylase FTO regulates the apoptosis and inflammation of cardiomyocytes via YAP1 in ischemia-reperfusion injury. Bioengineered 2022;13:5443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia W, Su L, Jiao J. Cold-induced protein RBM3 orchestrates neurogenesis via modulating Yap mRNA stability in cold stress. J Cell Biol. 2018;217:3464–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turner-Bridger B, Caterino C, Cioni JM. Molecular mechanisms behind mRNA localization in axons. Open Biol. 2020;10:200177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Denes LT, Kelley CP, Wang ET. Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat Commun. 2021;12:6079.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hirokawa N. mRNA transport in dendrites: RNA granules, motors, and tracks. J Neurosci. 2006;26:7139–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Agote-Aran A, Schmucker S, Jerabkova K, Jmel BI, Berto A, Pacini L, et al. Spatial control of nucleoporin condensation by fragile X-related proteins. EMBO J. 2020;39:e104467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schaeffer C, Beaulande M, Ehresmann C, Ehresmann B, Moine H. The RNA binding protein FMRP: new connections and missing links. Biol Cell. 2003;95:221–8.

    Article  CAS  PubMed  Google Scholar 

  52. De Simone A, Nedelec F, Gonczy P. Dynein transmits polarized actomyosin cortical flows to promote centrosome separation. Cell Rep. 2016;14:2250–62.

    Article  PubMed  Google Scholar 

  53. Gurkaslar HK, Culfa E, Arslanhan MD, Lince-Faria M, Firat-Karalar EN. CCDC57 cooperates with microtubules and microcephaly protein CEP63 and regulates centriole duplication and mitotic progression. Cell Rep. 2020;31:107630.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (grant number 2021YFA1300201); the National Natural Science Foundation of China (grant numbers 81972227, 81730072, 82072608, 81872001, 81903007 and 82002467); the Guangzhou Science and Technology Plan Projects (grant number 201904020044) and the China Postdoctoral Science Foundation (2020M672999).

Author information

Authors and Affiliations

Authors

Contributions

F-WW conceived and devised the study. HL and F-WW designed the experiments and analysis. HL, C-HC, KH, Y-RL, X-DM, J-HC, J-WC, and SL performed the experiments. J-LL performed bioinformatics and statistical analysis. HL, C-HC, KH, and Y-RL analyzed and interpreted the data. Y-JF and Z-ZP provided CRC patients tissue samples and clinical information. F-WW and DX supervised the research, and HL together with F-WW wrote the manuscript. All authors approved the submitted manuscript.

Corresponding authors

Correspondence to Dan Xie or Feng-wei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, H., Cao, Ch., Han, K. et al. CEP63 upregulates YAP1 to promote colorectal cancer progression through stabilizing RNA binding protein FXR1. Oncogene 41, 4433–4445 (2022). https://doi.org/10.1038/s41388-022-02439-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02439-y

This article is cited by

Search

Quick links