Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lewis glycosphingolipids as critical determinants of TRAIL sensitivity in cancer cells

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cancer cell death and contributes to tumor rejection by cytotoxic lymphocytes in cancer immunosurveillance and immunotherapy. TRAIL and TRAIL receptor agonists have garnered wide popularity as promising agents for cancer therapy. We previously demonstrated that the loss of fucosylation in cancer cells impairs TRAIL sensitivity; however, the precise structures of the fucosylated glycans that regulate TRAIL sensitivity and their carrier molecules remain elusive. Herein, we observed that Lewis glycans among various fucosylated glycans positively regulate TRAIL-induced cell death. Specifically, Lewis glycans on lacto/neolacto glycosphingolipids, but not glycoproteins including TRAIL receptors, enhanced TRAIL-induced formation of the cytosolic caspase 8 complex, without affecting the formation of the membranous receptor complex. Furthermore, type I Lewis glycan expression in colon cancer cell lines and patient-derived cancer organoids was positively correlated with TRAIL sensitivity. These findings provide novel insights into the regulatory mechanism of TRAIL-induced cell death and facilitate the identification of novel predictive biomarkers for TRAIL-related cancer therapies in future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lewis glycans promote TRAIL-induced apoptosis.
Fig. 2: Lewis glycans promote caspase 8 activation in Complex II.
Fig. 3: Lewis glycans are not detected on DR4 and DR5.
Fig. 4: Lewis glycans on glycoproteins do not affect TRAIL-induced apoptosis.
Fig. 5: Lewis glycans on glycolipids promote TRAIL-induced apoptosis.
Fig. 6: Positive correlation between expression of type I Lewis glycans and TRAIL sensitivity in colorectal cancer cell lines.
Fig. 7: Positive correlation between expression of type I Lewis glycans and TRAIL sensitivity in patient-derived colon cancer organoids.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Data not included are available from the corresponding authors upon reasonable request.

References

  1. Lemoine J, Ruella M, Houot R. Overcoming intrinsic resistance of cancer cells to CAR T-cell killing. Clin Cancer Res. 2021;27:6298–306.

    Article  CAS  PubMed  Google Scholar 

  2. Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ. 2014;21:1350–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deng D, Shah K. TRAIL of hope meeting resistance in cancer. Trends Cancer. 2020;6:989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL, Fairall L, et al. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell. 2012;47:291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fox JL, Hughes MA, Meng X, Sarnowska NA, Powley IR, Jukes-Jones R, et al. Cryo-EM structural analysis of FADD:Caspase-8 complexes defines the catalytic dimer architecture for co-ordinated control of cell fate. Nat Commun. 2021;12:819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henry CM, Martin SJ. Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol Cell. 2017;65:715–29.

    Article  CAS  PubMed  Google Scholar 

  7. Jin Z, El-Deiry WS. Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol Cell Biol. 2006;26:8136–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lafont E, Kantari-Mimoun C, Draber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. Embo J. 2017;36:1147–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lavrik IN, Mock T, Golks A, Hoffmann JC, Baumann S, Krammer PH. CD95 stimulation results in the formation of a novel death effector domain protein-containing complex. J Biol Chem. 2008;283:26401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varfolomeev E, Maecker H, Sharp D, Lawrence D, Renz M, Vucic D, et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem. 2005;280:40599–608.

    Article  CAS  PubMed  Google Scholar 

  11. Lafont E, Hartwig T, Walczak H. Paving TRAIL’s path with ubiquitin. Trends Biochemical Sci. 2018;43:44–60.

    Article  CAS  Google Scholar 

  12. Ma B, Simala-Grant JL, Taylor DE. Fucosylation in prokaryotes and eukaryotes. Glycobiology. 2006;16:158R–184R.

    Article  CAS  PubMed  Google Scholar 

  13. Holdener BC, Haltiwanger RS. Protein O-fucosylation: structure and function. Curr Opin Struct Biol. 2019;56:78–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyoshi E, Moriwaki K, Nakagawa T. Biological function of fucosylation in cancer biology. J Biochem. 2008;143:725–9.

    Article  CAS  PubMed  Google Scholar 

  15. Moriwaki K, Noda K, Furukawa Y, Ohshima K, Uchiyama A, Nakagawa T, et al. Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling. Gastroenterology. 2009;137:188–98.

    Article  CAS  PubMed  Google Scholar 

  16. Moriwaki K, Shinzaki S, Miyoshi E. GDP-mannose-4,6-dehydratase (GMDS) deficiency renders colon cancer cells resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor- and CD95-mediated apoptosis by inhibiting complex II formation. J Biol Chem. 2011;286:43123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med. 2007;13:1070–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang B, van Roosmalen IAM, Reis CR, Setroikromo R, Quax WJ. Death receptor 5 is activated by fucosylation in colon cancer cells. FEBS J. 2019;286:555–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yago K, Zenita K, Ginya H, Sawada M, Ohmori K, Okuma M, et al. Expression of alpha-(1,3)-fucosyltransferases which synthesize sialyl Le(x) and sialyl Le(a), the carbohydrate ligands for E- and P-selectins,in human malignant cell lines. Cancer Res. 1993;53:5559–65.

    CAS  PubMed  Google Scholar 

  20. Costache M, Apoil PA, Cailleau A, Elmgren A, Larson G, Henry S, et al. Evolution of fucosyltransferase genes in vertebrates. J Biol Chem. 1997;272:29721–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pan L, Fu TM, Zhao W, Zhao L, Chen W, Qiu C, et al. Higher-order clustering of the transmembrane anchor of DR5 drives signaling. Cell 2019;176:1477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moriwaki K, Chan FK. RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 2013;27:1640–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dufour F, Rattier T, Shirley S, Picarda G, Constantinescu AA, Morle A, et al. N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death. Cell Death Differ. 2017;24:500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang Y, Wen T, Yan R, Kim SR, Stowell SR, Wang W, et al. O-glycans on death receptors in cells modulate their sensitivity to TRAIL-induced apoptosis through affecting on their stability and oligomerization. FASEB J. 2020;34:11786–801.

    Article  CAS  PubMed  Google Scholar 

  25. Seko A, Yamashita K. Activation of beta1,3-N-acetylglucosaminyltransferase-2 (beta3Gn-T2) by beta3Gn-T8. Possible involvement of beta3Gn-T8 in increasing poly-N-acetyllactosamine chains in differentiated HL-60 cells. J Biol Chem. 2008;283:33094–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, et al. Molecular cloning and characterization of UDP-GlcNAc:lactosylceramide beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem. 2001;276:22032–40.

    Article  CAS  PubMed  Google Scholar 

  27. Kondo J, Endo H, Okuyama H, Ishikawa O, Iishi H, Tsujii M, et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci USA. 2011;108:6235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu C, Deng S, Jin K, Gong Y, Cheng H, Fan Z, et al. Lewis antigennegative pancreatic cancer: An aggressive subgroup. Int J Oncol. 2020;56:900–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakayama K, Moriwaki K, Imai T, Shinzaki S, Kamada Y, Murata K, et al. Mutation of GDP-mannose-4,6-dehydratase in colorectal cancer metastasis. PLoS One. 2013;8:e70298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Togayachi A, Kozono Y, Ikehara Y, Ito H, Suzuki N, Tsunoda Y, et al. Lack of lacto/neolacto-glycolipids enhances the formation of glycolipid-enriched microdomains, facilitating B cell activation. Proc Natl Acad Sci USA. 2010;107:11900–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Linderoth E, Pilia G, Mahajan NP, Ferby I. Activated Cdc42-associated kinase 1 (Ack1) is required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor recruitment to lipid rafts and induction of cell death. J Biol Chem. 2013;288:32922–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marconi M, Ascione B, Ciarlo L, Vona R, Garofalo T, Sorice M, et al. Constitutive localization of DR4 in lipid rafts is mandatory for TRAIL-induced apoptosis in B-cell hematologic malignancies. Cell Death Dis. 2013;4:e863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ouyang W, Yang C, Zhang S, Liu Y, Yang B, Zhang J, et al. Absence of death receptor translocation into lipid rafts in acquired TRAIL-resistant NSCLC cells. Int J Oncol. 2013;42:699–711.

    Article  CAS  PubMed  Google Scholar 

  34. Akazawa Y, Mott JL, Bronk SF, Werneburg NW, Kahraman A, Guicciardi ME, et al. Death receptor 5 internalization is required for lysosomal permeabilization by TRAIL in malignant liver cell lines. Gastroenterology 2009;136:2365–76.

    Article  PubMed  CAS  Google Scholar 

  35. Kohlhaas SL, Craxton A, Sun XM, Pinkoski MJ, Cohen GM. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. J Biol Chem. 2007;282:12831–41.

    Article  CAS  PubMed  Google Scholar 

  36. Song JJ, Szczepanski MJ, Kim SY, Kim JH, An JY, Kwon YT, et al. c-Cbl-mediated degradation of TRAIL receptors is responsible for the development of the early phase of TRAIL resistance. Cell Signal. 2010;22:553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, et al. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood. 2020;135:597–609.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Singh N, Lee YG, Shestova O, Ravikumar P, Hayer KE, Hong SJ, et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. Cancer Disco. 2020;10:552–67.

    Article  CAS  Google Scholar 

  39. Stern HM, Padilla M, Wagner K, Amler L, Ashkenazi A. Development of immunohistochemistry assays to assess GALNT14 and FUT3/6 in clinical trials of dulanermin and drozitumab. Clin Cancer Res. 2010;16:1587–96.

    Article  CAS  PubMed  Google Scholar 

  40. Moriwaki K, Noda K, Nakagawa T, Asahi M, Yoshihara H, Taniguchi N, et al. A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. Glycobiology 2007;17:1311–20.

    Article  CAS  PubMed  Google Scholar 

  41. Noda K, Miyoshi E, Gu J, Gao CX, Nakahara S, Kitada T, et al. Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res. 2003;63:6282–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ayaka Hiraishi for technical assistance.

Funding

This study was supported by the Japan Society for the Promotion of Science (KM: 16H06945 and 19K07399), the Takeda Science Foundation (KM), GSK Japan Research Grant 2020 (KM), and the Japan Agency for Medical Research and Development (JP20ae0101042 to KM and JP20gm1210002 to HN).

Author information

Authors and Affiliations

Authors

Contributions

KM conceived the project. TF, KM, and ST designed experiments. TF, KM, and ST performed experiments with assistance from JK, MS, and SK-S, AT and HK performed glycan structure analysis of DR4. MT-O and YM performed structural analysis of glycosphingolipids. TF, KM, ST, JK, YK, MI, KB, YM, KO, HN, and EM analyzed the data. TF and KM wrote the manuscript. KM and EM supervised the projects.

Corresponding authors

Correspondence to Kenta Moriwaki or Eiji Miyoshi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuoka, T., Moriwaki, K., Takamatsu, S. et al. Lewis glycosphingolipids as critical determinants of TRAIL sensitivity in cancer cells. Oncogene 41, 4385–4396 (2022). https://doi.org/10.1038/s41388-022-02434-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02434-3

Search

Quick links