Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FOXA1 inhibits hypoxia programs through transcriptional repression of HIF1A

Abstract

Intratumoral hypoxia is associated with castration-resistant prostate cancer (CRPC), a lethal disease. FOXA1 is an epithelial transcription factor that is down-regulated in CRPC. We have previously reported that FOXA1 loss induces epithelial-mesenchymal transition (EMT) and cell motility through elevated TGFβ signaling. However, whether FOXA1 directly regulates hypoxia pathways of CRPC tumors has not been previously studied. Here we report that FOXA1 down-regulation induces hypoxia transcriptional programs, and FOXA1 level is negatively correlated with hypoxia markers in clinical prostate cancer (PCa) samples. Mechanistically, FOXA1 directly binds to an intragenic enhancer of HIF1A to inhibit its expression, and HIF1A, in turn, is critical in mediating FOXA1 loss-induced hypoxia gene expression. Further, we identify CCL2, a chemokine ligand that modulates tumor microenvironment and promotes cancer progression, as a crucial target of the FOXA1-HIF1A axis. We found that FOXA1 loss leads to immunosuppressive macrophage infiltration and increased cell invasion, dependent on HIF1A expression. Critically, therapeutic targeting of HIF1A-CCL2 using pharmacological inhibitors abolishes FOXA1 loss-induced macrophage infiltration and PCa cell invasion. In summary, our study reveals an essential role of FOXA1 in controlling the hypoxic tumor microenvironment and establishes the HIF1A-CCL2 axis as one mechanism of FOXA1 loss-induced CRPC progression.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: FOXA1 down-regulation in PCa cells induces hypoxia programs.
Fig. 2: FOXA1 directly inhibits HIF1A transcription through an intragenic enhancer.
Fig. 3: FOXA1 inhibits hypoxia programs and CCL2 gene expression through HIF1A.
Fig. 4: FOXA1 loss-induced HIF1A promotes macrophage infiltration and cell invasion.
Fig. 5: Targeting HIF1A/CCL2 axis abolishes FOXA1 loss-induced hypoxia programs, macrophage infiltration, and cell invasion.

Data availability

RNA-seq data generated in this study were deposited to the NCBI GEO database under accession number GSE195571. Secure token for reviewers: oxelgsegfhotdsl

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA: A Cancer J Clin. 2021;71:7–33.

    Google Scholar 

  2. Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013;32:5501.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: a review. Jama. 2017;317:2532–42.

    PubMed  Google Scholar 

  4. Kupelian PA, Mahadevan A, Reddy CA, Reuther AM, Klein EA. Use of different definitions of biochemical failure after external beam radiotherapy changes conclusions about relative treatment efficacy for localized prostate cancer. Urology. 2006;68:593–8.

    PubMed  Google Scholar 

  5. Tucci M, Zichi C, Buttigliero C, Vignani F, Scagliotti GV, Di Maio M. Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. Onco Targets Ther. 2018;11:7353–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gupta K, Gupta S. Neuroendocrine differentiation in prostate cancer: key epigenetic players. Transl Cancer Res. 2017;6:S104–s108.

    PubMed  Google Scholar 

  7. Jin HJ, Zhao JC, Wu L, Kim J, Yu J. Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat Commun. 2014;5:3972.

    CAS  PubMed  Google Scholar 

  8. Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, et al. Targeting FOXA1-mediated repression of TGF-beta signaling suppresses castration-resistant prostate cancer progression. J Clin Invest. 2019;129:569–82.

    PubMed  Google Scholar 

  9. Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 2011;474:390–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim J, Jin H, Zhao JC, Yang YA, Li Y, Yang X, et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene. 2017;36:4072–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin HJ, Zhao JC, Ogden I, Bergan RC, Yu J. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res. 2013;73:3725–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O, et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol. 2012;32:941–53.

    PubMed  PubMed Central  Google Scholar 

  13. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    CAS  PubMed  Google Scholar 

  14. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.

    CAS  PubMed  Google Scholar 

  15. Vaupel P, Kelleher DK, Hockel M. Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol. 2001;28:29–35.

    CAS  PubMed  Google Scholar 

  16. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  17. Vergis R, Corbishley CM, Norman AR, Bartlett J, Jhavar S, Borre M, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol. 2008;9:342–51.

    PubMed  Google Scholar 

  18. Fraga A, Ribeiro R, Principe P, Lopes C, Medeiros R. Hypoxia and prostate cancer aggressiveness: a tale with many endings. Clin Genitourin Cancer. 2015;13:295–301.

    PubMed  Google Scholar 

  19. Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 2004;6:485–95.

    CAS  PubMed  Google Scholar 

  20. Zhong H, Semenza GL, Simons JW, De Marzo AM. Up-regulation of hypoxia-inducible factor 1alpha is an early event in prostate carcinogenesis. Cancer Detect Prev. 2004;28:88–93.

    CAS  PubMed  Google Scholar 

  21. Ranasinghe WK, Xiao L, Kovac S, Chang M, Michiels C, Bolton D, et al. The role of hypoxia-inducible factor 1α in determining the properties of castrate-resistant prostate cancers. PLoS One. 2013;8:e54251.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41:518–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li N, Li Y, Li Z, Huang C, Yang Y, Lang M, et al. Hypoxia Inducible Factor 1 (HIF-1) recruits macrophage to activate pancreatic stellate cells in pancreatic ductal adenocarcinoma. Int J Mol Sci. 2016;17:799.

    PubMed Central  Google Scholar 

  24. Korbecki J, Kojder K, Barczak K, Siminska D, Gutowska I, Chlubek D. et al. Hypoxia alters the expression of CC chemokines and CC chemokine receptors in a Tumor-A literature review. Int J Mol Sci. 2020;21:5647.

    PubMed Central  Google Scholar 

  25. Su W, Han HH, Wang Y, Zhang B, Zhou B, Cheng Y, et al. The polycomb repressor Complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression. Cancer Cell. 2019;36:139–.e110.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsai YC, Chen WY, Abou-Kheir W, Zeng T, Yin JJ, Bahmad H, et al. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1717–27.

    CAS  PubMed  Google Scholar 

  27. Loberg RD, Ying C, Craig M, Yan L, Snyder LA, Pienta KJ. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia. 2007;9:556–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee GT, Kwon SJ, Kim J, Kwon YS, Lee N, Hong JH, et al. WNT5A induces castration-resistant prostate cancer via CCL2 and tumour-infiltrating macrophages. Br J Cancer. 2018;118:670–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget. 2016;7:28697–710.

    PubMed  PubMed Central  Google Scholar 

  30. Wang K, Luo J, Yeh S, You B, Meng J, Chang P, et al. The MAO inhibitors phenelzine and clorgyline revert enzalutamide resistance in castration-resistant prostate cancer. Nat Commun. 2020;11:2689.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo H, Ci X, Ahmed M, Hua JT, Soares F, Lin D, et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun. 2019;10:278.

    PubMed  PubMed Central  Google Scholar 

  32. Tran MGB, Bibby BAS, Yang L, Lo F, Warren AY, Shukla D, et al. Independence of HIF1a and androgen signaling pathways in prostate cancer. BMC Cancer. 2020;20:469.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Geng H, Xue C, Mendonca J, Sun XX, Liu Q, Reardon PN, et al. Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/AR-targeted therapy. Nat Commun. 2018;9:4972.

    PubMed  PubMed Central  Google Scholar 

  34. Milosevic M, Warde P, Ménard C, Chung P, Toi A, Ishkanian A, et al. Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin Cancer Res. 2012;18:2108–14.

    CAS  PubMed  Google Scholar 

  35. Phatnani HP, Greenleaf AL. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 2006;20:2922–36.

    CAS  PubMed  Google Scholar 

  36. Liu YQ, Kyle E, Patel S, Housseau F, Hakim F, Lieberman R, et al. Prostate cancer chemoprevention agents exhibit selective activity against early-stage prostate cancer cells. Prostate Cancer Prostatic Dis. 2001;4:81–91.

    CAS  PubMed  Google Scholar 

  37. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 2004;101:811–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharm Ther. 2016;164:152–69.

    CAS  Google Scholar 

  40. Lo CH, Lynch CC. Multifaceted roles for macrophages in prostate cancer skeletal metastasis. Front Endocrinol. 2018;9:247.

    Google Scholar 

  41. Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12:76.

    PubMed  PubMed Central  Google Scholar 

  42. Narita T, Yin SM, Gelin CF, Nicolaou KC, Van Meir EG. Identification of a novel small molecule Hif-1a translation inhibitor. Neuro-Oncol. 2009;11:946–946.

    Google Scholar 

  43. Brahimi-Horn MC, Pouyssegur J. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. Int Rev Cytol. 2005;242:157–213.

    CAS  PubMed  Google Scholar 

  44. Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, et al. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol. 2015;309:C569–579.

    PubMed  PubMed Central  Google Scholar 

  45. Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med. 2013;17:30–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fumagalli D, Wilson TR, Salgado R, Lu X, Yu J, O’Brien C, et al. Somatic mutation, copy number and transcriptomic profiles of primary and matched metastatic estrogen receptor-positive breast cancers. Ann Oncol. 2016;27:1860–6.

    CAS  PubMed  Google Scholar 

  47. Liu Y, Carlsson R, Comabella M, Wang J, Kosicki M, Carrion B, et al. FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med. 2014;20:272–82.

    CAS  PubMed  Google Scholar 

  48. He Y, Wang L, Wei T, Xiao YT, Sheng H, Su H, et al. FOXA1 overexpression suppresses interferon signaling and immune response in cancer. J Clin Invest. 2021;131:e147025.

    PubMed Central  Google Scholar 

  49. Henze AT, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 2016;126:3672–9.

    PubMed  PubMed Central  Google Scholar 

  50. Nguyen HM, Vessella RL, Morrissey C, Brown LG, Coleman IM, Higano CS, et al. LuCaP prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate. 2017;77:654–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH prostate SPORE P50CA180995 (to JY), NIH R50CA211271 (to JCZ), and Prostate Cancer Foundation 2017CHAL2008 (to JY, JCZ). LB, SHP, and GG were supported in part by NIH/NCI training grant T32 CA009560.

Author information

Authors and Affiliations

Authors

Contributions

JY and XW conceived the project. JY, XW, and LB designed experiments. XW, LB, XL, WX, and SHP performed experiments. GG assisted with PDX tissue acquisition. JCZ, LB, and JY conducted bioinformatics and statistical analysis. JY, XW, and LB wrote the manuscript and generated figures. All authors read the manuscript.

Corresponding author

Correspondence to Jindan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Brea, L., Lu, X. et al. FOXA1 inhibits hypoxia programs through transcriptional repression of HIF1A. Oncogene 41, 4259–4270 (2022). https://doi.org/10.1038/s41388-022-02423-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02423-6

Search

Quick links