Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EZH2 regulates a SETDB1/ΔNp63α axis via RUNX3 to drive a cancer stem cell phenotype in squamous cell carcinoma

Abstract

Enhancer of zeste homolog 2 (EZH2) and SET domain bifurcated 1 (SETDB1, also known as ESET) are oncogenic methyltransferases implicated in a number of human cancers. These enzymes typically function as epigenetic repressors of target genes by methylating histone H3 K27 and H3-K9 residues, respectively. Here, we show that EZH2 and SETDB1 are essential to proliferation in 3 SCC cell lines, HSC-5, FaDu, and Cal33. Additionally, we find both of these proteins highly expressed in an aggressive stem-like SCC sub-population. Depletion of either EZH2 or SETDB1 disrupts these stem-like cells and their associated phenotypes of spheroid formation, invasion, and tumor growth. We show that SETDB1 regulates this SCC stem cell phenotype through cooperation with ΔNp63α, an oncogenic isoform of the p53-related transcription factor p63. Furthermore, EZH2 is upstream of both SETDB1 and ΔNp63α, activating these targets via repression of the tumor suppressor RUNX3. We show that targeting this pathway with inhibitors of EZH2 results in activation of RUNX3 and repression of both SETDB1 and ΔNp63α, antagonizing the SCC cancer stem cell phenotype. This work highlights a novel pathway that drives an aggressive cancer stem cell phenotype and demonstrates a means of pharmacological intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SETDB1 regulates a cancer stem cell phenotype in SCC.
Fig. 2: SETDB1 regulates an SCC CSC phenotype via ΔNp63α.
Fig. 3: ΔNp63α regulates SETDB1 to influence the SCC CSC phenotype.
Fig. 4: EZH2 regulates SETDB1 and ΔNp63α, and their corresponding phenotypes.
Fig. 5: The catalytic function of EZH2 is necessary for the regulation of SETDB1 and ΔNp63α.
Fig. 6: EZH2-repressed RUNX3 represses SETDB1 and ΔNp63α, and the SCC CSC phenotype.
Fig. 7: RUNX3 is a repressor of ΔNp63α and SETDB1.
Fig. 8: EZH2, SETDB1 and p63 are overexpressed in human SCCs, and showed increased staining in cells with high SOX2 expression.

Similar content being viewed by others

Data availability

RNA-seq and ChIP-seq data are available from the Gene Expression Omnibus database (accession no. GSE202789) Methods for CRISPR activation, CRISPR depletion, domain-focused CRISPR screening, cDNA overexpression, EPZ-6438 and GSK126 treatment, GFP depletion assays, tumor xenografts, ChIP-seq, and RNA-seq are described in the Supplementary Information. Antibodies and reagents are also listed there, as well as RT-qPCR primer sequences and sgRNA sequences.

References

  1. Yan W, Wistuba II, Emmert-Buck MR, Erickson HS. Squamous cell carcinoma—similarities and differences among anatomical sites. Am J Cancer Res. 2011;1:275–300.

    Article  PubMed  Google Scholar 

  2. Paver EC, Currie AM, Gupta R, Dahlstrom JE. Human papilloma virus related squamous cell carcinomas of the head and neck: diagnosis, clinical implications and detection of HPV. Pathology. 2020;52:179–91.

    Article  PubMed  Google Scholar 

  3. Liu-Smith F, Jia J, Zheng Y. UV-induced molecular signaling differences in melanoma and non-melanoma skin cancer. Adv Exp Med Biol. 2017;996:27–40.

    Article  CAS  PubMed  Google Scholar 

  4. Kikuchi K, Inoue H, Miyazaki Y, Ide F, Kojima M, Kusama K. Epstein-Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity. Jpn Dent Sci Rev. 2017;53:95–109.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Johnson N. Tobacco use and oral cancer: a global perspective. J Dent Educ. 2001;65:328–39.

    Article  CAS  PubMed  Google Scholar 

  6. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382:889–99.

    Article  PubMed  Google Scholar 

  7. Bacciu A, Mercante G, Ingegnoli A, Ferri T, Muzzetto P, Leandro G, et al. Effects of gastroesophageal reflux disease in laryngeal carcinoma. Clin Otolaryngol Allied Sci. 2004;29:545–8.

    Article  CAS  PubMed  Google Scholar 

  8. Lee SH. Chemotherapy for lung cancer in the era of personalized medicine. Tuberc Respir Dis. 2019;82:179–89.

    Article  Google Scholar 

  9. Deng HY, Wang WP, Wang YC, Hu WP, Ni PZ, Lin YD, et al. Neoadjuvant chemoradiotherapy or chemotherapy? A comprehensive systematic review and meta-analysis of the options for neoadjuvant therapy for treating oesophageal cancer. Eur J Cardiothorac Surg. 2017;51:421–31.

    PubMed  Google Scholar 

  10. Tagliamento M, Genova C, Rijavec E, Rossi G, Biello F, Dal Bello MG, et al. Afatinib and Erlotinib in the treatment of squamous-cell lung cancer. Expert Opin Pharmacother. 2018;19:2055–62.

    Article  CAS  PubMed  Google Scholar 

  11. Kaidar-Person O, Gil Z, Billan S. Precision medicine in head and neck cancer. Drug Resist Updat. 2018;40:13–6.

    Article  PubMed  Google Scholar 

  12. Oshimori N. Cancer stem cells and their niche in the progression of squamous cell carcinoma. Cancer Sci. 2020;111:3985–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M. Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells. 2015;7:1185–201.

    PubMed  PubMed Central  Google Scholar 

  14. Fisher ML, Balinth S, Hwangbo Y, Wu C, Ballon C, Wilkinson JE, et al. BRD4 regulates transcription factor ∆Np63α to drive a cancer stem cell phenotype in squamous cell carcinomas. Cancer Res. 2021;81:6246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398:708–13.

    Article  CAS  PubMed  Google Scholar 

  16. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2:305–16.

    Article  CAS  PubMed  Google Scholar 

  17. Soares E, Zhou H. Master regulatory role of p63 in epidermal development and disease. Cell Mol Life Sci. 2018;75:1179–90.

    Article  CAS  PubMed  Google Scholar 

  18. Fisher ML, Balinth S, Mills AA. p63-related signaling at a glance. J Cell Sci. 2020;133:jcs228015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Petitjean A, Ruptier C, Tribollet V, Hautefeuille A, Chardon F, Cavard C, et al. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. Carcinogenesis. 2008;29:73–81.

    Article  CAS  Google Scholar 

  20. Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 2003;17:1855–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karanth AV, Maniswami RR, Prashanth S, Govindaraj H, Padmavathy R, Jegatheesan SK, et al. Emerging role of SETDB1 as a therapeutic target. Expert Opin Ther Targets. 2017;21:319–31.

    Article  CAS  PubMed  Google Scholar 

  22. Regina C, Compagnone M, Peschiaroli A, Lena A, Annicchiarico-Petruzzelli M, Piro MC, et al. Setdb1, a novel interactor of ΔNp63, is involved in breast tumorigenesis. Oncotarget. 2016;7:28836–48.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24:268–73.

    Article  CAS  PubMed  Google Scholar 

  25. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA. 2010;107:20980–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao M, Hu X, Xu Y, Wu C, Chen J, Ren Y, et al. Targeting of EZH2 inhibits epithelial‑mesenchymal transition in head and neck squamous cell carcinoma via regulating the STAT3/VEGFR2 axis. Int J Oncol. 2019;55:1165–75.

    CAS  PubMed  Google Scholar 

  27. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bae SC, Choi JK. Tumor suppressor activity of RUNX3. Oncogene. 2004;23:4336–40.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao Z, Tian Y, Jia Y, Shen Q, Jiang W, Chen G, et al. RUNX3 inhibits the invasion and migration of esophageal squamous cell carcinoma by reversing the epithelial‑mesenchymal transition through TGF‑β/Smad signaling. Oncol Rep. 2020;43:1289–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Keyes WM, Pecoraro M, Aranda V, Vernersson-Lindahl E, Li W, Vogel H, et al. ΔNp63α is an oncogene that targets chromatin remodeler Lsh to drive skin stem cell proliferation and tumorigenesis. Cell Stem Cell. 2011;8:164–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 2015;33:661–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sniezek JC, Matheny KE, Westfall MD, Pietenpol JA. Dominant negative p63 isoform expression in head and neck squamous cell carcinoma. Laryngoscope. 2004;114:2063–72.

    Article  CAS  PubMed  Google Scholar 

  33. Somerville TDD, Xu Y, Miyabayashi K, Tiriac H, Cleary CR, Maia-Silva D, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic ductal adenocarcinoma. Cell Rep. 2018;25:1741–55.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res. 2015;43:W39–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Romano RA, Birkaya B, Sinha S. Defining the regulatory elements in the proximal promoter of DeltaNp63 in keratinocytes: Potential roles for Sp1/Sp3, NF-Y, and p63. J Investig Dermatol. 2006;126:1469–79.

    Article  CAS  PubMed  Google Scholar 

  37. Antonini D, Rossi B, Han R, Minichiello A, Di Palma T, Corrado M, et al. An autoregulatory loop directs the tissue-specific expression of p63 through a long-range evolutionarily conserved enhancer. Mol Cell Biol. 2006;26:3308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsusaka T, Shimura C, Shinkai Y. ATF7IP regulates SETDB1 nuclear localization and increases its ubiquitination. EMBO Rep. 2019;20:e48297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bangsow C, Rubins N, Glusman G, Bernstein Y, Negreanu V, Goldenberg D, et al. The RUNX3 gene-sequence, structure and regulated expression. Gene. 2001;279:221–32.

    Article  CAS  PubMed  Google Scholar 

  40. Selvarajan V, Osato M, Nah GSS, Yan J, Chung TH, Voon DC, et al. RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC. Leukemia. 2017;31:2219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Otani S, Date Y, Ueno T, Ito T, Kajikawa S, Omori K, et al. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma. Oncogene. 2022;41:683–91.

    Article  CAS  PubMed  Google Scholar 

  42. Kudo Y, Tsunematsu T, Takata T. Oncogenic role of RUNX3 in head and neck cancer. J Cell Biochem. 2011;112:387–93.

    Article  CAS  PubMed  Google Scholar 

  43. Gao F, Huang C, Lin M, Wang Z, Shen J, Zhang H, et al. Frequent inactivation of RUNX3 by promoter hypermethylation and protein mislocalization in oral squamous cell carcinomas. J Cancer Res Clin Oncol. 2009;135:739–47.

    Article  CAS  PubMed  Google Scholar 

  44. Jili S, Eryong L, Lijuan L, Chao Z. RUNX3 inhibits laryngeal squamous cell carcinoma malignancy under the regulation of miR-148a-3p/DNMT1 axis. Cell Biochem Funct. 2016;34:597–605.

    Article  PubMed  CAS  Google Scholar 

  45. Sugiura H, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Mori Y, et al. Decreased expression of RUNX3 is correlated with tumor progression and poor prognosis in patients with esophageal squamous cell carcinoma. Oncol Rep. 2008;19:713–9.

    CAS  PubMed  Google Scholar 

  46. Kumar A, Singhal M, Chopra C, Srinivasan S, Surabhi RP, Kanumuri R, et al. Threonine 209 phosphorylation on RUNX3 by Pak1 is a molecular switch for its dualistic functions. Oncogene. 2016;35:4857–65.

    Article  CAS  PubMed  Google Scholar 

  47. Kanumuri R, Chelluboyina AK, Biswal J, Vignesh R, Pandian J, Venu A, et al. Small peptide inhibitor from the sequence of RUNX3 disrupts PAK1–RUNX3 interaction and abrogates its phosphorylation-dependent oncogenic function. Oncogene. 2021;40:5327–41.

    Article  CAS  PubMed  Google Scholar 

  48. Fujii S, Ito K, Ito Y, Ochiai A. Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 2008;283:17324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu B, Klingbeil O, Tarumoto Y, Somerville TDD, Huang YH, Wei Y, et al. A transcription factor addiction in leukemia imposed by the MLL promoter sequence. Cancer Cell. 2018;34:970–81.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–8.

    Article  CAS  PubMed  Google Scholar 

  51. Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23:4211–9.

    Article  CAS  PubMed  Google Scholar 

  52. Date Y, Ito K. Oncogenic RUNX3: a link between p53 deficiency and MYC dysregulation. Mol Cells. 2020;43:176–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang L, Yu H, Ness S, Mao P, Guo F, Tang J, et al. Comprehensive analysis of co-mutations identifies cooperating mechanisms of tumorigenesis. Cancers. 2022;14:415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jian Z, Strait A, Jimeno A, Wang XJ. Cancer stem cells in squamous cell carcinoma. J Investig Dermatol. 2017;137:31–7.

    Article  CAS  PubMed  Google Scholar 

  55. Lin C, Li X, Zhang Y, Guo Y, Zhou J, Gao K, et al. The microRNA feedback regulation of p63 in cancer progression. Oncotarget. 2015;6:8434–53.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of the Director, National Institutes of Health through award numbers 5P30CA045508 (Cancer Center Support Grant), CA247400 (to SB), CA225134 (to MLF), as well as R01CA190997 and R21OD018332 (to AAM). This project was also supported through the Cold Spring Harbor Laboratory and Northwell Health Affiliation.

Author information

Authors and Affiliations

Authors

Contributions

SB: Performed and designed experiments, paper writing. MLF: Performed and designed experiments. YH: Performed and designed experiments. CW: Performed and designed experiments. CB: Performed experiments. XS: Designed experiments. AAM: Experimental design and direction, paper writing, funding.

Corresponding author

Correspondence to Alea A. Mills.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balinth, S., Fisher, M.L., Hwangbo, Y. et al. EZH2 regulates a SETDB1/ΔNp63α axis via RUNX3 to drive a cancer stem cell phenotype in squamous cell carcinoma. Oncogene 41, 4130–4144 (2022). https://doi.org/10.1038/s41388-022-02417-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02417-4

This article is cited by

Search

Quick links