Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Autocrine pro-legumain promotes breast cancer metastasis via binding to integrin αvβ3

Abstract

Tumor metastasis is the leading cause of cancer-associated mortality. Unfortunately, the underlying mechanism of metastasis is poorly understood. Expression of legumain (LGMN), an endo-lysosomal cysteine protease, positively correlates with breast cancer metastatic progression and poor prognosis. Here, we report that LGMN is secreted in the zymogen form by motile breast cancer cells. Through binding to cell surface integrin αvβ3 via an RGD motif, the autocrine pro-LGMN activates FAK-Src-RhoA signaling in cancer cells and promotes cancer cell migration and invasion independent of LGMN protease activity. Either silencing LGMN expression or mutationally abolishing pro-LGMN‒αvβ3 interaction significantly inhibits cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Finally, we developed a monoclonal antibody against LGMN RGD motif, which blocks pro-LGMN‒αvβ3 binding, and effectively suppresses cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Thus, disruption of pro-LGMN‒integrin αvβ3 interaction may be a potentially promising strategy for treating breast cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Upregulated LGMN expression is correlated with breast cancer metastasis-free progression.
Fig. 2: LGMN knockdown impairs breast cancer cell migration and invasion.
Fig. 3: RGD motif in LGMN mediates its binding to β3 integrin independent of the catalytic activity.
Fig. 4: LGMN promotes cancer cell migration and invasion dependent on the binding to integrin.
Fig. 5: LGMN-integrin binding activates FAK-Src-RhoA pathway.
Fig. 6: LGMN promotes breast cancer bone metastasis in vivo.
Fig. 7: LGMN blocking antibody C10 effectively suppresses breast cancer metastasis.

Data availability

Previously published breast cancer microarray data (GSE65194, GSE45255 and GSE22219) were downloaded from Gene Expression Omnibus. All information and data are available upon request.

References

  1. Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.

    CAS  PubMed  Article  Google Scholar 

  2. Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529:298–306.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol. 2020;62:166–81.

    CAS  PubMed  Article  Google Scholar 

  5. Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35:347–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Arnaout MA, Mahalingam B, Xiong JP. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 2005;21:381–410.

    CAS  PubMed  Article  Google Scholar 

  7. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.

    CAS  PubMed  Article  Google Scholar 

  8. Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110:599–511.

    CAS  PubMed  Article  Google Scholar 

  9. Zhu J, Carman CV, Kim M, Shimaoka M, Springer TA, Luo BH. Requirement of alpha and beta subunit transmembrane helix separation for integrin outside-in signaling. Blood. 2007;110:2475–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Carreiras F, Denoux Y, Staedel C, Lehmann M, Sichel F, Gauduchon P. Expression and localization of alpha v integrins and their ligand vitronectin in normal ovarian epithelium and in ovarian carcinoma. Gynecol Oncol. 1996;62:260–7.

    CAS  PubMed  Article  Google Scholar 

  11. Gehler S, Ponik SM, Riching KM, Keely PJ. Bi-directional signaling: extracellular matrix and integrin regulation of breast tumor progression. Crit Rev Eukaryot Gene Expr. 2013;23:139–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Natali PG, Hamby CV, Felding-Habermann B, Liang B, Nicotra MR, Di Filippo F, et al. Clinical significance of alpha(v)beta3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res. 1997;57:1554–60.

    CAS  PubMed  Google Scholar 

  13. Upheber S, Karle A, Miller J, Schlaugk S, Gross E, Reuning U. Alternative splicing of KAI1 abrogates its tumor-suppressive effects on integrin alphavbeta3-mediated ovarian cancer biology. Cell Signal. 2015;27:652–62.

    CAS  PubMed  Article  Google Scholar 

  14. Futakuchi M, Fukamachi K, Suzui M. Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer. Adv Drug Deliv Rev. 2016;99:206–11.

    CAS  PubMed  Article  Google Scholar 

  15. McCabe NP, De S, Vasanji A, Brainard J, Byzova TV. Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene. 2007;26:6238–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Chen JM, Dando PM, Rawlings ND, Brown MA, Young NE, Stevens RA, et al. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem. 1997;272:8090–8.

    CAS  PubMed  Article  Google Scholar 

  17. Dando PM, Fortunato M, Smith L, Knight CG, McKendrick JE, Barrett AJ. Pig kidney legumain: an asparaginyl endopeptidase with restricted specificity. Biochem J. 1999;339(Pt 3):743–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Chen JM, Fortunato M, Stevens RA, Barrett AJ. Activation of progelatinase A by mammalian legumain, a recently discovered cysteine proteinase. Biol Chem. 2001;382:777–83.

    CAS  PubMed  Article  Google Scholar 

  19. Dall E, Brandstetter H. Structure and function of legumain in health and disease. Biochimie. 2016;122:126–50.

    CAS  PubMed  Article  Google Scholar 

  20. Zhao L, Hua T, Crowley C, Ru H, Ni X, Shaw N, et al. Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage. Cell Res. 2014;24:344–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Braulke T, Bonifacino JS. Sorting of lysosomal proteins. Biochim Biophys Acta. 2009;1793:605–14.

    CAS  PubMed  Article  Google Scholar 

  22. Wu W, Luo Y, Sun C, Liu Y, Kuo P, Varga J, et al. Targeting cell-impermeable prodrug activation to tumor microenvironment eradicates multiple drug-resistant neoplasms. Cancer Res. 2006;66:970–80.

    CAS  PubMed  Article  Google Scholar 

  23. Gawenda J, Traub F, Luck HJ, Kreipe H, von Wasielewski R. Legumain expression as a prognostic factor in breast cancer patients. Breast Cancer Res Treat. 2007;102:1–6.

    CAS  PubMed  Article  Google Scholar 

  24. Guo P, Zhu Z, Sun Z, Wang Z, Zheng X, Xu H. Expression of legumain correlates with prognosis and metastasis in gastric carcinoma. PLoS One. 2013;8:e73090.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Haugen MH, Boye K, Nesland JM, Pettersen SJ, Egeland EV, Tamhane T, et al. High expression of the cysteine proteinase legumain in colorectal cancer - implications for therapeutic targeting. Eur J Cancer. 2015;51:9–17.

    CAS  PubMed  Article  Google Scholar 

  26. Meng F, Liu W. Knockdown of legumain suppresses cervical cancer cell migration and invasion. Oncol Res. 2016;23:7–12.

    PubMed  PubMed Central  Article  Google Scholar 

  27. Murthy RV, Arbman G, Gao J, Roodman GD, Sun XF. Legumain expression in relation to clinicopathologic and biological variables in colorectal cancer. Clin Cancer Res. 2005;11:2293–9.

    CAS  PubMed  Article  Google Scholar 

  28. Ohno Y, Nakashima J, Izumi M, Ohori M, Hashimoto T, Tachibana M. Association of legumain expression pattern with prostate cancer invasiveness and aggressiveness. World J Urol. 2013;31:359–64.

    CAS  PubMed  Article  Google Scholar 

  29. Wang L, Chen S, Zhang M, Li N, Chen Y, Su W, et al. Legumain: a biomarker for diagnosis and prognosis of human ovarian cancer. J Cell Biochem. 2012;113:2679–86.

    CAS  PubMed  Article  Google Scholar 

  30. Briggs JJ, Haugen MH, Johansen HT, Riker AI, Abrahamson M, Fodstad O, et al. Cystatin E/M suppresses legumain activity and invasion of human melanoma. BMC Cancer. 2010;10:17.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Qi Q, Obianyo O, Du Y, Fu H, Li S, Ye K. Blockade of asparagine endopeptidase inhibits cancer metastasis. J Med Chem. 2017;60:7244–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Liao D, Liu Z, Wrasidlo W, Chen T, Luo Y, Xiang R, et al. Synthetic enzyme inhibitor: a novel targeting ligand for nanotherapeutic drug delivery inhibiting tumor growth without systemic toxicity. Nanomedicine. 2011;7:665–73.

    CAS  PubMed  Article  Google Scholar 

  33. Liu Y, Bajjuri KM, Liu C, Sinha SC. Targeting cell surface alpha(v)beta(3) integrin increases therapeutic efficacies of a legumain protease-activated auristatin prodrug. Mol Pharm. 2012;9:168–75.

    CAS  PubMed  Article  Google Scholar 

  34. Dall E, Brandstetter H. Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation. Proc Natl Acad Sci USA. 2013;110:10940–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Buffa FM, Camps C, Winchester L, Snell CE, Gee HE, Sheldon H, et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res. 2011;71:5635–45.

    CAS  PubMed  Article  Google Scholar 

  36. Maire V, Baldeyron C, Richardson M, Tesson B, Vincent-Salomon A, Gravier E, et al. TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PLoS One. 2013;8:e63712.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Maire V, Nemati F, Richardson M, Vincent-Salomon A, Tesson B, Rigaill G, et al. Polo-like kinase 1: a potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. Cancer Res. 2013;73:813–23.

    CAS  PubMed  Article  Google Scholar 

  38. Maubant S, Tesson B, Maire V, Ye M, Rigaill G, Gentien D, et al. Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells. PLoS One. 2015;10:e0122333.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Nagalla S, Chou JW, Willingham MC, Ruiz J, Vaughn JP, Dubey P, et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol. 2013;14:R34.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–5.

    CAS  PubMed  Article  Google Scholar 

  41. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.

    CAS  PubMed  Article  Google Scholar 

  42. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006;18:516–23.

    CAS  PubMed  Article  Google Scholar 

  43. Lin Y, Wei C, Liu Y, Qiu Y, Liu C, Guo F. Selective ablation of tumor-associated macrophages suppresses metastasis and angiogenesis. Cancer Sci. 2013;104:1217–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Sepulveda FE, Maschalidi S, Colisson R, Heslop L, Ghirelli C, Sakka E, et al. Critical role for asparagine endopeptidase in endocytic toll-like receptor signaling in dendritic cells. Immunity. 2009;31:737–48.

    CAS  PubMed  Article  Google Scholar 

  45. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM. Molecular interactions in cancer cell metastasis. Acta Histochem. 2010;112:3–25.

    CAS  PubMed  Article  Google Scholar 

  47. van der Horst G, van den Hoogen C, Buijs JT, Cheung H, Bloys H, Pelger RC, et al. Targeting of alpha(v)-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer. Neoplasia. 2011;13:516–25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Karagiannis GS, Schaeffer DF, Cho CK, Musrap N, Saraon P, Batruch I, et al. Collective migration of cancer-associated fibroblasts is enhanced by overexpression of tight junction-associated proteins claudin-11 and occludin. Mol Oncol. 2014;8:178–95.

    CAS  PubMed  Article  Google Scholar 

  50. Nakashima Y, Yoshinaga K, Kitao H, Ando K, Kimura Y, Saeki H, et al. Podoplanin is expressed at the invasive front of esophageal squamous cell carcinomas and is involved in collective cell invasion. Cancer Sci. 2013;104:1718–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Richardson AM, Havel LS, Koyen AE, Konen JM, Shupe J, Wiles WGT, et al. Vimentin is required for lung adenocarcinoma metastasis via heterotypic tumor cell-cancer-associated fibroblast interactions during collective invasion. Clin Cancer Res. 2018;24:420–32.

    CAS  PubMed  Article  Google Scholar 

  52. Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA, Sun H, et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 2015;125:1927–43.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Yang C, Cao M, Liu Y, He Y, Du Y, Zhang G, et al. Inducible formation of leader cells driven by CD44 switching gives rise to collective invasion and metastases in luminal breast carcinomas. Oncogene. 2019;38:7113–32.

    CAS  PubMed  Article  Google Scholar 

  54. Haeger A, Alexander S, Vullings M, Kaiser FMP, Veelken C, Flucke U, et al. Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med. 2020;217:e20181184.

    PubMed  Article  CAS  Google Scholar 

  55. Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion. Nat Rev Cancer. 2021;21:592–604.

    CAS  PubMed  Article  Google Scholar 

  56. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000;56:337–44.

    CAS  PubMed  Article  Google Scholar 

  57. Lu L, Lin C, Yan Z, Wang S, Zhang Y, Wang S, et al. Kindlin-3 is essential for the resting alpha4beta1 integrin-mediated firm cell adhesion under shear flow conditions. J Biol Chem. 2016;291:10363–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Pertz O, Hodgson L, Klemke RL, Hahn KM. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature. 2006;440:1069–72.

    CAS  PubMed  Article  Google Scholar 

  59. Price LS, Leng J, Schwartz MA, Bokoch GM. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell. 1998;9:1863–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Key Research and Development Program of China (2020YFA0509102 to J.F.C., 2020YFA0803203 to G.X.G.), National Natural Science Foundation of China (31970702 to C.D.L., 32030024, 31830112, 31525016 to J.F.C., 32070789 to G.X.G.). Program of Shanghai Academic Research Leader (19XD1404200), National Ten Thousand Talents Program. The authors gratefully acknowledge the support of SA-SIBS scholarship program.

Author information

Authors and Affiliations

Authors

Contributions

JFC, GXG, and ZJY conceptualized the project and designed the experiments. CL and JLW performed most of the experiments and data analysis. YZ performed bioinformatic analysis. ZHZ performed protein purification. YAZ, CYL, YJZ, ZYL, CDL, and YTW assisted in animal experiments. YYW and MYY assisted in scFV screening. The manuscript was drafted by CL and edited by GXG and JFC.

Corresponding authors

Correspondence to ZhanJun Yan, GaoXiang Ge or JianFeng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, J., Zheng, Y. et al. Autocrine pro-legumain promotes breast cancer metastasis via binding to integrin αvβ3. Oncogene 41, 4091–4103 (2022). https://doi.org/10.1038/s41388-022-02409-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02409-4

Search

Quick links