Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The deubiquitinase USP7 regulates oxidative stress through stabilization of HO-1


Heme oxygenase-1 (HO-1) is an inducible heme degradation enzyme that plays a cytoprotective role against various oxidative and inflammatory stresses. However, it has also been shown to exert an important role in cancer progression through a variety of mechanisms. Although transcription factors such as Nrf2 are involved in HO-1 regulation, the posttranslational modifications of HO-1 after oxidative insults and the underlying mechanisms remain unexplored. Here, we screened and identified that the deubiquitinase USP7 plays a key role in the control of redox homeostasis through promoting HO-1 deubiquitination and stabilization in hepatocytes. We used low-dose arsenic as a stress model which does not affect the transcriptional level of HO-1, and found that the interaction between USP7 and HO-1 is increased after arsenic exposure, leading to enhanced HO-1 expression and attenuated oxidative damages. Furthermore, HO-1 protein is ubiquitinated at K243 and subjected to degradation under resting conditions; whereas when after arsenic exposure, USP7 itself can be ubiquitinated at K476, thereafter promoting the binding between USP7 and HO-1, finally leading to enhanced HO-1 deubiquitination and protein accumulation. Moreover, depletion of USP7 and HO-1 inhibit liver tumor growth in vivo, and USP7 positively correlates with HO-1 protein level in clinical human hepatocellular carcinoma (HCC) specimens. In summary, our findings reveal a critical role of USP7 as a HO-1 deubiquitinating enzyme in the regulation of oxidative stresses, and suggest that USP7 inhibitor might be a potential therapeutic agent for treating HO-1 overexpressed liver cancers.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: USP7 interacts with and deubiquitinates HO-1.
Fig. 2: USP7 regulates low-dose arsenic-triggered oxidative damage through HO-1.
Fig. 3: Deubiquitination of HO-1 by USP7 is important for arsenic-induced oxidative damage.
Fig. 4: Ubiquitination of USP7 promotes the interaction between USP7 and HO-1 under arsenic exposure.
Fig. 5: USP7 and HO-1 is critical for liver tumor growth in vivo and in vitro.
Fig. 6: USP7 and HO-1 are high expressed and positively correlated in the tumor samples of HCC patients.

Data availability

Research data is available upon request. No data was deposited to databases.


  1. Luu Hoang KN, Anstee JE, Arnold JN. The diverse roles of heme oxygenase-1 in tumor progression. Front Immunol. 2021;12:658315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Was H, Dulak J, Jozkowicz A. Heme oxygenase-1 in tumor biology and therapy. Curr Drug targets. 2010;11:1551–70.

    Article  CAS  PubMed  Google Scholar 

  3. Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA, Furfaro AL. HO-1 induction in cancer progression: a matter of cell adaptation. Antioxidants. 2017;6:29.

    Article  PubMed Central  CAS  Google Scholar 

  4. Srisook K, Kim C, Cha YN. Molecular mechanisms involved in enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the “one-two” punch. Antioxid Redox Signal. 2005;7:1674–87.

    Article  CAS  PubMed  Google Scholar 

  5. Alam J, Cook JL. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol. 2007;36:166–74.

    Article  CAS  PubMed  Google Scholar 

  6. Ferrandiz ML, Devesa I. Inducers of heme oxygenase-1. Curr Pharm Des. 2008;14:473–86.

    Article  CAS  PubMed  Google Scholar 

  7. Song J, Zhang X, Liao Z, Liang H, Chu L, Dong W, et al. 14-3-3zeta inhibits heme oxygenase-1 (HO-1) degradation and promotes hepatocellular carcinoma proliferation: involvement of STAT3 signaling. J Exp Clin cancer Res: CR. 2019;38:3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Toro A, Anselmino N, Solari C, Francia M, Oses C, Sanchis P, et al. Novel Interplay between p53 and HO-1 in embryonic stem cells. Cells. 2021;10:35.

    Article  CAS  Google Scholar 

  9. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  CAS  PubMed  Google Scholar 

  10. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gallo LH, Ko J, Donoghue DJ. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle. 2017;16:634–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol cancer. 2020;19:146.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10:550–63.

    Article  CAS  PubMed  Google Scholar 

  14. Pozhidaeva A, Bezsonova I. USP7: structure, substrate specificity, and inhibition. DNA Repair. 2019;76:30–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Kang W, You Y, Pang J, Ren H, Suo Z, et al. USP7: novel drug target in cancer therapy. Front Pharmacol. 2019;10:427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Parsons JL, Dianov GL. ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell. 2012;45:801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernandez-Montalvan A, Bouwmeester T, Joberty G, Mader R, Mahnke M, Pierrat B, et al. Biochemical characterization of USP7 reveals post-translational modification sites and structural requirements for substrate processing and subcellular localization. FEBS J. 2007;274:4256–70.

    Article  CAS  PubMed  Google Scholar 

  18. Morotti A, Panuzzo C, Crivellaro S, Pergolizzi B, Familiari U, Berger AH, et al. BCR-ABL disrupts PTEN nuclear-cytoplasmic shuttling through phosphorylation-dependent activation of HAUSP. Leukemia. 2014;28:1326–33.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J, Wang J, Chen C, Yuan H, Wen X, Sun H. USP7: target validation and drug discovery for cancer therapy. Medicinal Chem. 2018;14:3–18.

    Article  CAS  Google Scholar 

  20. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, et al. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol: JAT. 2011;31:95–107.

    CAS  PubMed  Google Scholar 

  21. Kumagai Y, Sumi D. Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu Rev Pharmacol Toxicol. 2007;47:243–62.

    Article  CAS  PubMed  Google Scholar 

  22. Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 2002;133:1–16.

    Article  CAS  PubMed  Google Scholar 

  23. Soza-Ried C, Bustamante E, Caglevic C, Rolfo C, Sirera R, Marsiglia H. Oncogenic role of arsenic exposure in lung cancer: a forgotten risk factor. Crit Rev Oncol/Hematol. 2019;139:128–33.

    Article  Google Scholar 

  24. Han JJW, Ho DV, Kim HM, Lee JY, Jeon YS, Chan JY. The deubiquitinating enzyme USP7 regulates the transcription factor Nrf1 by modulating its stability in response to toxic metal exposure. J Biol Chem. 2021;296:100732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Y, Zeng W, Qi M, Duan Y, Su J, Zhao S, et al. Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes. Oncogenesis. 2017;6:e370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH, et al. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol. 2006;13:285–91.

    Article  CAS  PubMed  Google Scholar 

  27. Lee JG, Baek K, Soetandyo N, Ye Y. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun. 2013;4:1568.

    Article  PubMed  CAS  Google Scholar 

  28. Tan J, Li P, Xue H, Li Q. Cyanidin-3-glucoside prevents hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells. Biotechnol Lett. 2020;42:2453–66.

    Article  CAS  PubMed  Google Scholar 

  29. Yi G, Din JU, Zhao F, Liu X. Effect of soybean peptides against hydrogen peroxide induced oxidative stress in HepG2 cells via Nrf2 signaling. Food Funct. 2020;11:2725–37.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu C, Hu W, Wu H, Hu X. No evident dose-response relationship between cellular ROS level and its cytotoxicity-a paradoxical issue in ROS-based cancer therapy. Sci Rep. 2014;4:5029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu FF, Chiang MT, Li FA, Yeh CT, Lee WH, Chau LY. Acetylation is essential for nuclear heme oxygenase-1-enhanced tumor growth and invasiveness. Oncogene. 2017;36:6805–14.

    Article  CAS  PubMed  Google Scholar 

  32. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol life Sci: CMLS. 2016;73:3221–47.

    Article  CAS  PubMed  Google Scholar 

  33. Abiko Y, Shinkai Y, Sumi D, Kumagai Y. Reduction of arsenic-induced cytotoxicity through Nrf2/HO-1 signaling in HepG2 cells. J Toxicological Sci. 2010;35:419–23.

    Article  CAS  Google Scholar 

  34. Nininahazwe L, Liu B, He C, Zhang H, Chen ZS. The emerging nature of Ubiquitin-specific protease 7 (USP7): a new target in cancer therapy. Drug Discov today. 2021;26:490–502.

    Article  CAS  PubMed  Google Scholar 

  35. Khoronenkova SV, Dianova II, Parsons JL, Dianov GL. USP7/HAUSP stimulates repair of oxidative DNA lesions. Nucleic Acids Res. 2011;39:2604–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kashiwaba S, Kanao R, Masuda Y, Kusumoto-Matsuo R, Hanaoka F, Masutani C. USP7 is a suppressor of PCNA ubiquitination and oxidative-stress-induced mutagenesis in human cells. Cell Rep. 2015;13:2072–80.

    Article  CAS  PubMed  Google Scholar 

  37. Lee G, Oh TI, Um KB, Yoon H, Son J, Kim BM, et al. Small-molecule inhibitors of USP7 induce apoptosis through oxidative and endoplasmic reticulum stress in cancer cells. Biochem Biophys Res Commun. 2016;470:181–6.

    Article  CAS  PubMed  Google Scholar 

  38. Hubaux R, Becker-Santos DD, Enfield KS, Rowbotham D, Lam S, Lam WL, et al. Molecular features in arsenic-induced lung tumors. Mol Cancer. 2013;12:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Waalkes MP, Liu J, Ward JM, Diwan BA. Animal models for arsenic carcinogenesis: inorganic arsenic is a transplacental carcinogen in mice. Toxicol Appl Pharmacol. 2004;198:377–84.

    Article  CAS  PubMed  Google Scholar 

  40. Zou C, Zou C, Cheng W, Li Q, Han Z, Wang X, et al. Heme oxygenase-1 retards hepatocellular carcinoma progression through the microRNA pathway. Oncol Rep. 2016;36:2715–22.

    Article  CAS  PubMed  Google Scholar 

  41. Gao M, Guo G, Huang J, Kloeber JA, Zhao F, Deng M, et al. USP52 regulates DNA end resection and chemosensitivity through removing inhibitory ubiquitination from CtIP. Nat Commun. 2020;11:5362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li C, Liu Y, Dong Z, Xu M, Gao M, Cong M, et al. TCDD promotes liver fibrosis through disordering systemic and hepatic iron homeostasis. J Hazard Mater. 2020;395:122588.

    Article  CAS  PubMed  Google Scholar 

Download references


This research was supported by National Natural Science Foundation of China (Grant no. 22076212), Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB2004), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (22021003) and Youth Innovation Promotion Association of CAS (2021040).

Author information

Authors and Affiliations



MG and ZQ designed and conducted experiments, analyzed data and wrote the paper; HH, MD, ZX, GG, JJ, XH, MX, JAK and SL provided technical and data analysis assistance. JHuang, ZL and JHan conceived and supervised the project, designed experiments, and analyzed data.

Corresponding authors

Correspondence to Jinzhou Huang, Zhenkun Lou or Jinxiang Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Qi, Z., Deng, M. et al. The deubiquitinase USP7 regulates oxidative stress through stabilization of HO-1. Oncogene 41, 4018–4027 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links