Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A synthetic lethal strategy using PARP and ATM inhibition for overcoming trastuzumab resistance in HER2-positive cancers

Abstract

Despite its clinical efficacy in HER2-positive cancers, resistance to trastuzumab inevitably occurs. The DNA damage response (DDR) pathway is essential for maintaining genomic stability and cell survival. However, the role of the DDR pathway in HER2-positive tumors and trastuzumab resistance remains elusive. In this study, we verified that increased PARP1 expression in trastuzumab-resistant (TR) cells, owing to its augmented stability by escape from proteasomal degradation, confers tolerability to trastuzumab-induced DNA damage. Interruption of PARP1 in TR cells restrains its cellular growth, while simultaneously activating ATM to retain its genome stability. Dual inhibition of PARP and ATM induces synthetic lethality in TR cells by favoring the toxic NHEJ pathway instead of the HRR pathway. Our results highlight the potential of clinical development of DDR-targeting strategies for trastuzumab-resistant HER2-positive cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TR cells sustains the functional DDR pathway to restore DSBs induced by trastuzumab.
Fig. 2: PARP1 is upregulated in trastuzumab-resistant (TR) cells, and functions distinctive from parental cells.
Fig. 3: Trastuzumab-resistant (TR) cells are vulnerable to PARP inhibition.
Fig. 4: PARP inhibition enhances DNA damage in trastuzumab-resistant (TR) cells.
Fig. 5: Synthetic lethal interaction between PARP and ataxia-telangiectasia mutated protein (ATM) in trastuzumab-resistant (TR) cells.
Fig. 6: Non-homologous end joining (NHEJ) dependency drives hypersensitivity of trastuzumab-resistant (TR) cells to PARP and ATM inhibition.
Fig. 7: Dual inhibition of PARP and ATM shows potent antitumor activity in the xenograft model.

Similar content being viewed by others

References

  1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    Article  CAS  Google Scholar 

  2. Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17:33–48.

    Article  CAS  Google Scholar 

  3. Yarlagadda B, Kamatham V, Ritter A, Shahjehan F, Kasi PM. Trastuzumab and pertuzumab in circulating tumor DNA ERBB2-amplified HER2-positive refractory cholangiocarcinoma. NPJ Precis Oncol. 2019;3:19.

    Article  Google Scholar 

  4. Meric-Bernstam F, Hurwitz H, Raghav KPS, McWilliams RR, Fakih M, VanderWalde A, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2019;20:518–30.

    Article  CAS  Google Scholar 

  5. Siena S, Sartore-Bianchi A, Marsoni S, Hurwitz HI, McCall SJ, Penault-Llorca F, et al. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Ann Oncol. 2018;29:1108–19.

    Article  CAS  Google Scholar 

  6. Ekman S. HER2: Defining a Neu target in non-small-cell lung cancer. Ann Oncol. 2019;30:353–5.

    Article  CAS  Google Scholar 

  7. Lae M, Couturier J, Oudard S, Radvanyi F, Beuzeboc P, Vieillefond A. Assessing HER2 gene amplification as a potential target for therapy in invasive urothelial bladder cancer with a standardized methodology: results in 1005 patients. Ann Oncol. 2010;21:815–9.

    Article  CAS  Google Scholar 

  8. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: Mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 2007;18:977–84.

    Article  CAS  Google Scholar 

  9. Pohlmann PR, Mayer IA, Mernaugh R. Resistance to trastuzumab in breast cancer. Clin Cancer Res. 2009;15:7479–91.

    Article  CAS  Google Scholar 

  10. Pilie PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16:81–104.

    Article  CAS  Google Scholar 

  11. O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60:547–60.

    Article  Google Scholar 

  12. Lubennikova E, Zhukova L, Lichinitser M, Stepanova E, Vishnevskaya Y, Khochenkov D. et al. ERCC1 and XRCC1 as prognostic biomarkers for early HER2-positive breast cancer. J. Clin. Oncol. 2018;36:5_suppl.e12562.

    Article  Google Scholar 

  13. Jin MH, Nam AR, Bang JH, Oh KS, Seo HR, Kim JM, et al. WEE1 inhibition reverses trastuzumab resistance in HER2-positive cancers. Gastric Cancer. 2021;24:1003–20.

    Article  CAS  Google Scholar 

  14. Boone JJ, Bhosle J, Tilby MJ, Hartley JA, Hochhauser D. Involvement of the HER2 pathway in repair of DNA damage produced by chemotherapeutic agents. Mol Cancer Ther. 2009;8:3015–23.

    Article  CAS  Google Scholar 

  15. Gibbs-Seymour I, Fontana P, Rack JGM, Ahel I. HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity. Mol Cell. 2016;62:432–42.

    Article  CAS  Google Scholar 

  16. Suskiewicz MJ, Zobel F, Ogden TEH, Fontana P, Ariza A, Yang JC, et al. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature 2020;579:598–602.

    Article  CAS  Google Scholar 

  17. Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18:610–21.

    Article  CAS  Google Scholar 

  18. Caron MC, Sharma AK, O’Sullivan J, Myler LR, Ferreira MT, Rodrigue A, et al. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat Commun. 2019;10:2954.

    Article  Google Scholar 

  19. Kim H, George E, Ragland R, Rafail S, Zhang R, Krepler C, et al. Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in BRCA-Mutant Ovarian Cancer Models. Clin Cancer Res. 2017;23:3097–108.

    Article  CAS  Google Scholar 

  20. Yazinski SA, Comaills V, Buisson R, Genois MM, Nguyen HD, Ho CK, et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017;31:318–32.

    Article  CAS  Google Scholar 

  21. Balmus G, Pilger D, Coates J, Demir M, Sczaniecka-Clift M, Barros AC, et al. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nat Commun. 2019;10:87.

    Article  CAS  Google Scholar 

  22. Mak JPY, Ma HT, Poon RYC. Synergism between ATM and PARP1 inhibition involves DNA damage and abrogating the G(2) DNA damage checkpoint. Mol Cancer Therapeutics. 2020;19:123–34.

    Article  CAS  Google Scholar 

  23. Riches LC, Trinidad AG, Hughes G, Jones GN, Hughes AM, Thomason AG, et al. Pharmacology of the ATM inhibitor AZD0156: Potentiation of irradiation and olaparib responses preclinically. Mol Cancer Therapeutics. 2020;19:13–25.

    Article  CAS  Google Scholar 

  24. Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA. 2011;108:3406–11.

    Article  CAS  Google Scholar 

  25. Britton S, Chanut P, Delteil C, Barboule N, Frit P, Calsou P. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res. 2020;48:9710–23.

    Article  CAS  Google Scholar 

  26. Wielgos ME, Zhang Z, Rajbhandari R, Cooper TS, Zeng L, Forero A, et al. Trastuzumab-Resistant HER2(+) Breast Cancer Cells Retain Sensitivity to Poly (ADP-Ribose) Polymerase (PARP) Inhibition. Mol Cancer Ther. 2018;17:921–30.

    Article  CAS  Google Scholar 

  27. Pilie PG, Gay CM, Byers LA, O’Connor MJ, Yap TA. PARP inhibitors: Extending benefit beyond BRCA-mutant cancers. Clin Cancer Res. 2019;25:3759–71.

    Article  CAS  Google Scholar 

  28. Qian H, Zhang N, Wu B, Wu S, You S, Zhang Y, et al. The E3 ubiquitin ligase Smurf2 regulates PARP1 stability to alleviate oxidative stress-induced injury in human umbilical vein endothelial cells. J Cell Mol Med. 2020;24:4600–11.

    Article  CAS  Google Scholar 

  29. Gatti M, Imhof R, Huang Q, Baudis M, Altmeyer M. The Ubiquitin Ligase TRIP12 limits PARP1 trapping and constrains PARP inhibitor efficiency. Cell Rep. 2020;32:107985.

    Article  CAS  Google Scholar 

  30. Smeenk G, Wiegant WW, Marteijn JA, Luijsterburg MS, Sroczynski N, Costelloe T, et al. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J Cell Sci. 2013;126:889–903.

    CAS  PubMed  Google Scholar 

  31. Li M, Lu LY, Yang CY, Wang SM, Yu XC. The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Gene Dev. 2013;27:1752–68.

    Article  CAS  Google Scholar 

  32. Haince JF, McDonald D, Rodrigue A, Dery U, Masson JY, Hendzel MJ, et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem. 2008;283:1197–208.

    Article  CAS  Google Scholar 

  33. Haince JF, Kozlov S, Dawson VL, Dawson TM, Hendzel MJ, Lavin MF, et al. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem. 2007;282:16441–53.

    Article  CAS  Google Scholar 

  34. Nam AR, Kim JW, Cha Y, Ha H, Park JE, Bang JH, et al. Therapeutic implication of HER2 in advanced biliary tract cancer. Oncotarget 2016;7:58007–21.

    Article  Google Scholar 

  35. Hu Y, Petit SA, Ficarro SB, Toomire KJ, Xie A, Lim E, et al. PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Disco. 2014;4:1430–47.

    Article  CAS  Google Scholar 

  36. Nowsheen S, Cooper T, Bonner JA, LoBuglio AF, Yang ES. HER2 overexpression renders human breast cancers sensitive to PARP inhibition independently of any defect in homologous recombination DNA repair. Cancer Res. 2012;72:4796–806.

    Article  CAS  Google Scholar 

  37. Jin M, Nam AR, Park JE, Bang JH, Bang YJ, Oh DY. Resistance mechanism against trastuzumab in HER2-positive cancer cells and its negation by Src inhibition. Mol Cancer Ther. 2017;16:1145–54.

    Article  CAS  Google Scholar 

  38. Lanczky A, Gyorffy B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J Med Internet Res. 2021;23:e27633.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the SNUH research fund (Grant No. 03-2019-0220) and the Institute of Smart Healthcare Innovative Medical Sciences, a Brain Korea 21 four program, Seoul National University, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Grant No. 2021R1A2C2007430). This research was also supported by 3rd AstraZeneca-KHIDI (Korea Health Industry Development Institute) oncology research program (Grant No. 06-2016-2920).

Author information

Authors and Affiliations

Authors

Contributions

Concept: Oh DY, Oh KS, Data generation: Oh KS, Analysis, interpretation: all. All authors approved the manuscript.

Corresponding author

Correspondence to Do-Youn Oh.

Ethics declarations

Competing interests

Oh DY: Consultant or advisory board member of AstraZeneca, Novartis, Genentech/Roche, Merck Serono, Bayer, Taiho, ASLAN, Halozyme, Zymeworks, BMS/Celgene, BeiGene, Basilea, Turning Point, and Yuhan. Research grant from AstraZeneca, Novartis, Array, Eli Lilly, Servier, BeiGene, MSD, and Handok.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, KS., Nam, AR., Bang, JH. et al. A synthetic lethal strategy using PARP and ATM inhibition for overcoming trastuzumab resistance in HER2-positive cancers. Oncogene 41, 3939–3952 (2022). https://doi.org/10.1038/s41388-022-02384-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02384-w

Search

Quick links