Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NSrp70 suppresses metastasis in triple-negative breast cancer by modulating Numb/TβR1/EMT axis

Abstract

Alternative splicing of mRNA precursors allows cancer cells to create different protein isoforms that promote growth and survival. Compared to normal cells, cancer cells frequently exhibit a higher diversity of their transcriptomes. A comprehensive understanding of splicing regulation is required to correct the splicing alterations for the future precision oncology. A quantitative proteomic screen was performed to identify the regulators associated the metastasis in triple-negative breast cancer. Multiple in vitro and in vivo functional analyses were used to study the effects of NSrp70 on breast cancer metastasis. Next, transcriptomic sequencing (RNA-seq) and alternative splicing bioinformatics analysis was applied to screen the potential targets of NSrp70. Moreover, in vitro splicing assays, RNA pull-down, and RNA immunoprecipitation assay were used to confirm the specific binding between NSrp70 and downstream target genes. Furthermore, the prognostic value of NSrp70 was analyzed in a cohort of patients by performing IHC. We uncovered NSrp70 as a novel suppressor of breast cancer metastasis. We discovered that NSrp70 inhibited the skipped exon alternative splicing of NUMB, promoted the degradation of transforming growth factor receptor 1 through lysosome pathway, and regulated TGFβ/SMAD-mediated epithelial-mesenchymal transition phenotype in breast cancer cells. Furthermore, high NSrp70 expression correlated with a better prognosis in breast cancer patients. Our findings revealed that splicing regulator NSrp70 serves as a metastasis suppressor.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: NSrp70 expression is downregulated in highly metastatic breast cancer cells.
Fig. 2: Loss of NSrp70 promotes breast cancer cell migration and metastasis in vitro and in vivo.
Fig. 3: NSrp70 inhibits SE alternative splicing of target pre-mRNA.
Fig. 4: Knockdown of NSrp70 promotes TGFβ–induced EMT.
Fig. 5: NSrp70 levels correlate with TβR1 degradation.
Fig. 6: Low NSrp70 expression correlates with poor patient prognosis.

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84:291–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venables JP. Aberrant and alternative splicing in cancer. Cancer Res. 2004;64:7647–54.

    Article  CAS  PubMed  Google Scholar 

  5. David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 2010;24:2343–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ladomery M. Aberrant alternative splicing is another hallmark of cancer. Int J Cell Biol. 2013;2013:463786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Read A, Natrajan R. Splicing dysregulation as a driver of breast cancer. Endocr Relat Cancer. 2018;25:R467–r478.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim YD, Lee JY, Oh KM, Araki M, Araki K, Yamamura K, et al. NSrp70 is a novel nuclear speckle-related protein that modulates alternative pre-mRNA splicing in vivo. Nucleic Acids Res. 2011;39:4300–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spector DL, Lamond AI. Nuclear speckles. Cold Spring Harb Perspect Biol. 2011;3:a000646.

  10. Xie J, Gizatullin R, Vukojevic V, Leopardi R. The CCDC55 couples cannabinoid receptor CNR1 to a putative DISC1 schizophrenia pathway. Neuroscience. 2015;310:723–30.

    Article  CAS  PubMed  Google Scholar 

  11. Lee SH, Kim C, Lee HK, Kim YK, Ismail T, Jeong Y, et al. NSrp70 is significant for embryonic growth and development, being a crucial factor for gastrulation and mesoderm induction. Biochem Biophys Res Commun. 2016;479:238–44.

    Article  CAS  PubMed  Google Scholar 

  12. Choi DB, Park MR, Kim HR, Jun CD, Kim HJ, Shim H, et al. Aberrant proteomic expression of NSRP70 and its clinical implications and connection to the transcriptional level in adult acute leukemia. Leuk Res. 2014;38:1252–9.

    Article  CAS  PubMed  Google Scholar 

  13. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim CH, Kim YD, Choi EK, Kim HR, Na BR, Im SH, et al. Nuclear speckle-related protein 70 binds to serine/arginine-rich splicing factors 1 and 2 via an arginine/serine-like region and counteracts their alternative splicing activity. J Biol Chem. 2016;291:6169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imamura T, Hikita A, Inoue Y. The roles of TGF-beta signaling in carcinogenesis and breast cancer metastasis. Breast Cancer. 2012;19:118–24.

    Article  PubMed  Google Scholar 

  16. Pece S, Confalonieri S, P RR, Di Fiore PP. NUMB-ing down cancer by more than just a NOTCH. Biochim Biophys Acta. 2011;1815:26–43.

    CAS  PubMed  Google Scholar 

  17. Reithmeier A, Panizza E, Krumpel M, Orre LM, Branca RMM, Lehtio J, et al. Tartrate-resistant acid phosphatase (TRAP/ACP5) promotes metastasis-related properties via TGFbeta2/TbetaR and CD44 in MDA-MB-231 breast cancer cells. BMC Cancer. 2017;17:650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sun H, Liu Y, Zhang L, Shao X, Liu K, Ding Z, et al. Numb positively regulates autophagic flux via regulating lysosomal function. Biochem Biophys Res Commun. 2017;491:780–6.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Manley JL. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 2013;3:1228–37.

    Article  CAS  PubMed  Google Scholar 

  20. Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34:211–24.e216.

    Article  CAS  PubMed  Google Scholar 

  21. Lee SC, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med. 2016;22:976–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tripathi V, Song DY, Zong X, Shevtsov SP, Hearn S, Fu XD, et al. SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles. Mol Biol Cell. 2012;23:3694–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng C, Yaffe MB, Sharp PA. A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev. 2006;20:1715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sherman LS, Rizvi TA, Karyala S, Ratner N. CD44 enhances neuregulin signaling by Schwann cells. J Cell Biol. 2000;150:1071–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bell MV, Cowper AE, Lefranc MP, Bell JI, Screaton GR. Influence of intron length on alternative splicing of CD44. Mol Cell Biol. 1998;18:5930–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loh TJ, Moon H, Cho S, Jung DW, Hong SE, Kim DH, et al. SC35 promotes splicing of the C5-V6-C6 isoform of CD44 pre-mRNA. Oncol Rep. 2014;31:273–9.

    Article  CAS  PubMed  Google Scholar 

  27. Erb U, Megaptche AP, Gu X, Buchler MW, Zoller M. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells. J Hematol Oncol. 2014;7:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Li N, Tsuji M, Kanda K, Murakami Y, Kanayama H, Kagawa S. Analysis of CD44 isoform v10 expression and its prognostic value in renal cell carcinoma. BJU Int. 2000;85:514–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kandachar V, Roegiers F. Endocytosis and control of Notch signaling. Curr Opin Cell Biol. 2012;24:534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santolini E, Puri C, Salcini AE, Gagliani MC, Pelicci PG, Tacchetti C, et al. Numb is an endocytic protein. J Cell Biol. 2000;151:1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Misquitta-Ali CM, Cheng E, O’Hanlon D, Liu N, McGlade CJ, Tsao MS, et al. Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Mol Cell Biol. 2011;31:138–50.

    Article  CAS  PubMed  Google Scholar 

  32. Zong FY, Fu X, Wei WJ, Luo YG, Heiner M, Cao LJ, et al. The RNA-binding protein QKI suppresses cancer-associated aberrant splicing. PLoS Genet. 2014;10:e1004289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang Z, Li SS. Numb: a new player in EMT. Cell Adhes Migr. 2010;4:176–9.

    Article  Google Scholar 

  34. Xiao X, Wang L, Wei P, Chi Y, Li D, Wang Q, et al. Role of MUC20 overexpression as a predictor of recurrence and poor outcome in colorectal cancer. J Transl Med. 2013;11:151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun HF, Yang XL, Zhao Y, Tian Q, Chen MT, Zhao YY, et al. Loss of TMEM126A promotes extracellular matrix remodeling, epithelial-to-mesenchymal transition, and breast cancer metastasis by regulating mitochondrial retrograde signaling. Cancer Lett. 2019;440-441:189–201.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng YZ, Cao ZG, Hu X, Shao ZM. The endoplasmic reticulum stress markers GRP78 and CHOP predict disease-free survival and responsiveness to chemotherapy in breast cancer. Breast Cancer Res Treat. 2014;145:349–58.

    Article  CAS  PubMed  Google Scholar 

  37. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Townley-Tilson WH, Pendergrass SA, Marzluff WF, Whitfield ML. Genome-wide analysis of mRNAs bound to the histone stem-loop binding protein. RNA. 2006;12:1853–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51:792–806.

    Article  CAS  PubMed  Google Scholar 

  40. Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7:1009–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cooper TA. Use of minigene systems to dissect alternative splicing elements. Methods. 2005;37:331–40.

    Article  CAS  PubMed  Google Scholar 

  42. Stoss O, Stoilov P, Hartmann AM, Nayler O, Stamm S. The in vivo minigene approach to analyze tissue-specific splicing. Brain Res Brain Res Protoc. 1999;4:383–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from National Natural Science Foundation of China (81972727) and the Municipal Human Resources Development Program for Outstanding Leaders in Medical Disciplines in Shanghai (2017BR028). We gratefully acknowledge the help of professor Igor Vladimirovich Reshetov (I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation) for the support of clinical statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

WJ, Yang Z, and HS contributed to the study design. Yang Z, Yuanyuan Z, and QL contributed to the methodology. YL and YH performed statistical analysis and interpretation. Yang Z wrote the original draft. WJ and HS revised the manuscript. WJ supervised the study and provided financial support.

Corresponding authors

Correspondence to Hefen Sun or Wei Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Sun, H., Zhao, Y. et al. NSrp70 suppresses metastasis in triple-negative breast cancer by modulating Numb/TβR1/EMT axis. Oncogene 41, 3409–3422 (2022). https://doi.org/10.1038/s41388-022-02349-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02349-z

This article is cited by

Search

Quick links