Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Malignant peripheral nerve sheath tumor: models, biology, and translation

Abstract

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8–13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology and histology of MPNST.
Fig. 2: Key cellular pathways underpinning MPNST development.
Fig. 3: Epigenetic regulation in MPNST.

Similar content being viewed by others

References

  1. Holt GR. Von Recklinghausen’s neurofibromatosis. Otolaryngol Clin N Am. 1987;20:179–93.

    Article  CAS  Google Scholar 

  2. Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129:865–77.

    Article  CAS  PubMed  Google Scholar 

  3. Stalnecker CA, Der CJ. RAS, wanted dead or alive: advances in targeting RAS mutant cancers. Sci Signal. 2020;13:eaay6013.

  4. Boyd KP, Korf BR, Theos A. Neurofibromatosis type 1. J Am Acad Dermatol. 2009;61:1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rad E, Tee AR. Neurofibromatosis type 1: fundamental insights into cell signalling and cancer. Semin Cell Dev Biol. 2016;52:39–46.

    Article  CAS  PubMed  Google Scholar 

  6. Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. Neurofibromatosis type 1. Nat Rev Dis Prim. 2017;3:17004.

    Article  PubMed  Google Scholar 

  7. Ferner RE. Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol. 2007;6:340–51.

    Article  PubMed  Google Scholar 

  8. Albers AC, Gutmann DH. Gliomas in patients with neurofibromatosis type 1. Expert Rev Neurother. 2009;9:535–9.

    Article  PubMed  Google Scholar 

  9. Fisher MJ, Loguidice M, Gutmann DH, Listernick R, Ferner RE, Ullrich NJ, et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol. 2012;14:790–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rosenbaum T, Wimmer K. Neurofibromatosis type 1 (NF1) and associated tumors. Klin Padiatr. 2014;226:309–15.

    Article  CAS  PubMed  Google Scholar 

  11. Muir D, Neubauer D, Lim IT, Yachnis AT, Wallace MR. Tumorigenic properties of neurofibromin-deficient neurofibroma Schwann cells. Am J Pathol. 2001;158:501–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chamseddin BH, Le LQ. Management of cutaneous neurofibroma: current therapy and future directions. Neurooncol Adv. 2020;2:i107–i116.

    PubMed  Google Scholar 

  13. Theos A, Korf BR.American College of Physicians, American Physiological Society.Pathophysiology of neurofibromatosis type 1. Ann Intern Med. 2006;144:842–9.

    Article  PubMed  Google Scholar 

  14. Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med. 2020;382:1430–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Z, Liu C, Patel AJ, Liao CP, Wang Y, Le LQ. Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell. 2014;26:695–706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dombi E, Baldwin A, Marcus LJ, Fisher MJ, Weiss B, Kim A, et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med. 2016;375:2550–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39:311–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuchs B, Spinner RJ, Rock MG. Malignant peripheral nerve sheath tumors: an update. J Surg Orthop Adv. 2005;14:168–74.

    PubMed  Google Scholar 

  19. Bates JE, Peterson CR, Dhakal S, Giampoli EJ, Constine LS. Malignant peripheral nerve sheath tumors (MPNST): a SEER analysis of incidence across the age spectrum and therapeutic interventions in the pediatric population. Pediatr Blood Cancer. 2014;61:1955–60.

    Article  PubMed  Google Scholar 

  20. Kim A, Stewart DR, Reilly KM, Viskochil D, Miettinen MM, Widemann BC. Malignant peripheral nerve sheath tumors state of the science: leveraging clinical and biological insights into effective therapies. Sarcoma. 2017;2017:7429697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Farid M, Demicco EG, Garcia R, Ahn L, Merola PR, Cioffi A, et al. Malignant peripheral nerve sheath tumors. Oncologist. 2014;19:193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. LaFemina J, Qin LX, Moraco NH, Antonescu CR, Fields RC, Crago AM, et al. Oncologic outcomes of sporadic, neurofibromatosis-associated, and radiation-induced malignant peripheral nerve sheath tumors. Ann Surg Oncol. 2013;20:66–72.

    Article  PubMed  Google Scholar 

  23. Pekmezci M, Reuss DE, Hirbe AC, Dahiya S, Gutmann DH, von Deimling A, et al. Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas. Mod Pathol. 2015;28:187–200.

    Article  CAS  PubMed  Google Scholar 

  24. Miettinen MM, Antonescu CR, Fletcher CDM, Kim A, Lazar AJ, Quezado MM, et al. Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1-a consensus overview. Hum Pathol. 2017;67:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Longo JF, Weber SM, Turner-Ivey BP, Carroll SL. Recent advances in the diagnosis and pathogenesis of neurofibromatosis type 1 (NF1)-associated peripheral nervous system neoplasms. Adv Anat Pathol. 2018;25:353–68.

    Article  PubMed  Google Scholar 

  26. Brosseau JP, Liao CP, Wang Y, Ramani V, Vandergriff T, Lee M, et al. NF1 heterozygosity fosters de novo tumorigenesis but impairs malignant transformation. Nat Commun. 2018;9:5014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kolberg M, Holand M, Agesen TH, Brekke HR, Liestol K, Hall KS, et al. Survival meta-analyses for >1800 malignant peripheral nerve sheath tumor patients with and without neurofibromatosis type 1. Neuro Oncol. 2013;15:135–47.

    Article  CAS  PubMed  Google Scholar 

  28. Bottillo I, Ahlquist T, Brekke H, Danielsen SA, van den Berg E, Mertens F, et al. Germline and somatic NF1 mutations in sporadic and NF1-associated malignant peripheral nerve sheath tumours. J Pathol. 2009;217:693–701.

    Article  CAS  PubMed  Google Scholar 

  29. Pemov A, Li H, Presley W, Wallace MR, Miller DT. Genetics of human malignant peripheral nerve sheath tumors. Neurooncol Adv. 2020;2:i50–i61.

    PubMed  Google Scholar 

  30. Ebben JD, Treisman DM, Zorniak M, Kutty RG, Clark PA, Kuo JS. The cancer stem cell paradigm: a new understanding of tumor development and treatment. Expert Opin Ther Targets. 2010;14:621–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  CAS  PubMed  Google Scholar 

  32. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  34. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.

    Article  CAS  PubMed  Google Scholar 

  35. Spyra M, Kluwe L, Hagel C, Nguyen R, Panse J, Kurtz A, et al. Cancer stem cell-like cells derived from malignant peripheral nerve sheath tumors. PLoS ONE. 2011;6:e21099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun D, Xie XP, Zhang X, Wang Z, Sait SF, Iyer SV, et al. Stem-like cells drive NF1-associated MPNST functional heterogeneity and tumor progression. Cell Stem Cell. 2021;28:1397–1410 e1394.

    Article  CAS  PubMed  Google Scholar 

  37. Laycock-van Spyk S, Thomas N, Cooper DN, Upadhyaya M. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics. 2011;5:623–90.

    Article  PubMed  Google Scholar 

  38. Brohl AS, Kahen E, Yoder SJ, Teer JK, Reed DR. The genomic landscape of malignant peripheral nerve sheath tumors: diverse drivers of Ras pathway activation. Sci Rep. 2017;7:14992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lemberg KM, Wang J, Pratilas CA. From genes to -omics: the evolving molecular landscape of malignant peripheral nerve sheath tumor. Genes. 2020;11:691.

  40. Kaplan HG, Rostad S, Ross JS, Ali SM, Millis SZ. Genomic profiling in patients with malignant peripheral nerve sheath tumors reveals multiple pathways with targetable mutations. J Natl Compr Canc Netw. 2018;16:967–74.

    Article  CAS  PubMed  Google Scholar 

  41. Beert E, Brems H, Daniels B, De Wever I, Van Calenbergh F, Schoenaers J, et al. Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors. Genes Chromosomes Cancer. 2011;50:1021–32.

    Article  CAS  PubMed  Google Scholar 

  42. Chaney KE, Perrino MR, Kershner LJ, Patel AV, Wu J, Choi K, et al. Cdkn2a loss in a model of neurofibroma demonstrates stepwise tumor progression to atypical neurofibroma and MPNST. Cancer Res. 2020;80:4720–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Legius E, Dierick H, Wu R, Hall BK, Marynen P, Cassiman JJ, et al. TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer. 1994;10:250–5.

    Article  CAS  PubMed  Google Scholar 

  44. Verdijk RM, den Bakker MA, Dubbink HJ, Hop WC, Dinjens WN, Kros JM. TP53 mutation analysis of malignant peripheral nerve sheath tumors. J Neuropathol Exp Neurol. 2010;69:16–26.

    Article  CAS  PubMed  Google Scholar 

  45. Jouhilahti EM, Peltonen S, Heape AM, Peltonen J. The pathoetiology of neurofibromatosis 1. Am J Pathol. 2011;178:1932–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carroll SL. Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms. Acta Neuropathol. 2012;123:321–48.

    Article  CAS  PubMed  Google Scholar 

  47. Carroll SL. The challenge of cancer genomics in rare nervous system neoplasms: malignant peripheral nerve sheath tumors as a paradigm for cross-species comparative oncogenomics. Am J Pathol. 2016;186:464–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mertens F, Rydholm A, Bauer HF, Limon J, Nedoszytko B, Szadowska A, et al. Cytogenetic findings in malignant peripheral nerve sheath tumors. Int J Cancer. 1995;61:793–8.

    Article  CAS  PubMed  Google Scholar 

  49. Berner JM, Sorlie T, Mertens F, Henriksen J, Saeter G, Mandahl N, et al. Chromosome band 9p21 is frequently altered in malignant peripheral nerve sheath tumors: studies of CDKN2A and other genes of the pRB pathway. Genes Chromosomes Cancer. 1999;26:151–60.

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt H, Taubert H, Wurl P, Bache M, Bartel F, Holzhausen HJ, et al. Cytogenetic characterization of six malignant peripheral nerve sheath tumors: comparison of karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet. 2001;128:14–23.

    Article  CAS  PubMed  Google Scholar 

  51. Dehner C, Moon CI, Zhang X, Zhou Z, Miller C, Xu H, et al. Chromosome 8 gain is associated with high-grade transformation in MPNST. JCI Insight. 2021;6:e146351.

  52. Peacock JD, Pridgeon MG, Tovar EA, Essenburg CJ, Bowman M, Madaj Z, et al. Genomic status of MET potentiates sensitivity to MET and MEK inhibition in NF1-related malignant peripheral nerve sheath tumors. Cancer Res. 2018;78:3672–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pemov A, Hansen NF, Sindiri S, Patidar R, Higham CS, Dombi E, et al. Low mutation burden and frequent loss of CDKN2A/B and SMARCA2, but not PRC2, define premalignant neurofibromatosis type 1-associated atypical neurofibromas. Neuro Oncol. 2019;21:981–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Szymanski JJ, Sundby RT, Jones PA, Srihari D, Earland N, Harris PK, et al. Cell-free DNA ultra-low-pass whole genome sequencing to distinguish malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion: a cross-sectional study. PLoS Med. 2021;18:e1003734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Holtkamp N, Malzer E, Zietsch J, Okuducu AF, Mucha J, Mawrin C, et al. EGFR and erbB2 in malignant peripheral nerve sheath tumors and implications for targeted therapy. Neuro Oncol. 2008;10:946–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holtkamp N, Okuducu AF, Mucha J, Afanasieva A, Hartmann C, Atallah I, et al. Mutation and expression of PDGFRA and KIT in malignant peripheral nerve sheath tumors, and its implications for imatinib sensitivity. Carcinogenesis. 2006;27:664–71.

    Article  CAS  PubMed  Google Scholar 

  57. Mantripragada KK, Spurlock G, Kluwe L, Chuzhanova N, Ferner RE, Frayling IM, et al. High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clin Cancer Res. 2008;14:1015–24.

    Article  CAS  PubMed  Google Scholar 

  58. Patwardhan PP, Surriga O, Beckman MJ, de Stanchina E, Dematteo RP, Tap WD, et al. Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of MPNSTs. Clin Cancer Res. 2014;20:3146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ki DH, He S, Rodig S, Look AT. Overexpression of PDGFRA cooperates with loss of NF1 and p53 to accelerate the molecular pathogenesis of malignant peripheral nerve sheath tumors. Oncogene. 2017;36:1058–68.

    Article  CAS  PubMed  Google Scholar 

  60. Wu J, Patmore DM, Jousma E, Eaves DW, Breving K, Patel AV, et al. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors. Oncogene. 2014;33:173–80.

    Article  CAS  PubMed  Google Scholar 

  61. Yang J, Ylipaa A, Sun Y, Zheng H, Chen K, Nykter M, et al. Genomic and molecular characterization of malignant peripheral nerve sheath tumor identifies the IGF1R pathway as a primary target for treatment. Clin Cancer Res. 2011;17:7563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chau V, Lim SK, Mo W, Liu C, Patel AJ, McKay RM, et al. Preclinical therapeutic efficacy of a novel pharmacologic inducer of apoptosis in malignant peripheral nerve sheath tumors. Cancer Res. 2014;74:586–97.

    Article  CAS  PubMed  Google Scholar 

  64. Patel AJ, Liao CP, Chen Z, Liu C, Wang Y, Le LQ. BET bromodomain inhibition triggers apoptosis of NF1-associated malignant peripheral nerve sheath tumors through Bim induction. Cell Rep. 2014;6:81–92.

    Article  CAS  PubMed  Google Scholar 

  65. De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N, et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014;514:247–51.

    Article  PubMed  CAS  Google Scholar 

  66. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M, et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 2014;46:1227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang M, Wang Y, Jones S, Sausen M, McMahon K, Sharma R, et al. Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nat Genet. 2014;46:1170–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Morey L, Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem Sci. 2010;35:323–32.

    Article  CAS  PubMed  Google Scholar 

  69. Harachi M, Masui K, Cavenee WK, Mischel PS, Shibata N. Protein acetylation at the interface of genetics, epigenetics and environment in cancer. Metabolites. 2021;11:216.

  70. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  71. Hirbe AC, Pekmezci M, Dahiya S, Apicelli AJ, Van Tine BA, Perry A, et al. BRAFV600E mutation in sporadic and neurofibromatosis type 1-related malignant peripheral nerve sheath tumors. Neuro Oncol. 2014;16:466–7.

    Article  PubMed  Google Scholar 

  72. Longo JF, Brosius SN, Znoyko I, Alers VA, Jenkins DP, Wilson RC, et al. Establishment and genomic characterization of a sporadic malignant peripheral nerve sheath tumor cell line. Sci Rep. 2021;11:5690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miller DT, Cortes-Ciriano I, Pillay N, Hirbe AC, Snuderl M, Bui MM, et al. Genomics of MPNST (GeM) Consortium: rationale and study design for multi-omic characterization of NF1-associated and sporadic MPNSTs. Genes. 2020;11:387.

  74. Badache A, De Vries GH. Neurofibrosarcoma-derived Schwann cells overexpress platelet-derived growth factor (PDGF) receptors and are induced to proliferate by PDGF BB. J Cell Physiol. 1998;177:334–42.

    Article  CAS  PubMed  Google Scholar 

  75. Miller SJ, Rangwala F, Williams J, Ackerman P, Kong S, Jegga AG, et al. Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res. 2006;66:2584–91.

    Article  CAS  PubMed  Google Scholar 

  76. Sun D, Tainsky MA, Haddad R. Oncogene mutation survey in MPNST cell lines enhances the dominant role of hyperactive Ras in NF1 associated pro-survival and malignancy. Transl Oncogenomics. 2012;5:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guo J, Grovola MR, Xie H, Coggins GE, Duggan P, Hasan R, et al. Comprehensive pharmacological profiling of neurofibromatosis cell lines. Am J Cancer Res. 2017;7:923–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kolberg M, Bruun J, Murumagi A, Mpindi JP, Bergsland CH, Holand M, et al. Drug sensitivity and resistance testing identifies PLK1 inhibitors and gemcitabine as potent drugs for malignant peripheral nerve sheath tumors. Mol Oncol. 2017;11:1156–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fang Y, Elahi A, Denley RC, Rao PH, Brennan MF, Jhanwar SC. Molecular characterization of permanent cell lines from primary, metastatic and recurrent malignant peripheral nerve sheath tumors (MPNST) with underlying neurofibromatosis-1. Anticancer Res. 2009;29:1255–62.

    CAS  PubMed  Google Scholar 

  80. Jia LQ, Osada M, Ishioka C, Gamo M, Ikawa S, Suzuki T, et al. Screening the p53 status of human cell lines using a yeast functional assay. Mol Carcinog. 1997;19:243–53.

    Article  CAS  PubMed  Google Scholar 

  81. DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, et al. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell. 1992;69:265–73.

    Article  CAS  PubMed  Google Scholar 

  82. Ryan JJ, Klein KA, Neuberger TJ, Leftwich JA, Westin EH, Kauma S, et al. Role for the stem cell factor/KIT complex in Schwann cell neoplasia and mast cell proliferation associated with neurofibromatosis. J Neurosci Res. 1994;37:415–32.

    Article  CAS  PubMed  Google Scholar 

  83. DeClue JE, Heffelfinger S, Benvenuto G, Ling B, Li S, Rui W, et al. Epidermal growth factor receptor expression in neurofibromatosis type 1-related tumors and NF1 animal models. J Clin Investig. 2000;105:1233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hakozaki M, Hojo H, Sato M, Tajino T, Yamada H, Kikuchi S, et al. Establishment and characterization of a novel human malignant peripheral nerve sheath tumor cell line, FMS-1, that overexpresses epidermal growth factor receptor and cyclooxygenase-2. Virchows Arch. 2009;455:517–26.

    Article  CAS  PubMed  Google Scholar 

  85. Dang I, DeVries GH. Schwann cell lines derived from malignant peripheral nerve sheath tumors respond abnormally to platelet-derived growth factor-BB. J Neurosci Res. 2005;79:318–28.

    Article  CAS  PubMed  Google Scholar 

  86. Torres KE, Zhu QS, Bill K, Lopez G, Ghadimi MP, Xie X, et al. Activated MET is a molecular prognosticator and potential therapeutic target for malignant peripheral nerve sheath tumors. Clin Cancer Res. 2011;17:3943–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eckert JM, Byer SJ, Clodfelder-Miller BJ, Carroll SL. Neuregulin-1 beta and neuregulin-1 alpha differentially affect the migration and invasion of malignant peripheral nerve sheath tumor cells. Glia. 2009;57:1501–20.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Demestre M, Terzi MY, Mautner V, Vajkoczy P, Kurtz A, Pina AL. Effects of pigment epithelium derived factor (PEDF) on malignant peripheral nerve sheath tumours (MPNSTs). J Neurooncol. 2013;115:391–9.

    Article  CAS  PubMed  Google Scholar 

  89. Perrin GQ, Li H, Fishbein L, Thomson SA, Hwang MS, Scarborough MT, et al. An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation. Lab Invest. 2007;87:1092–102.

    Article  CAS  PubMed  Google Scholar 

  90. Byer SJ, Eckert JM, Brossier NM, Clodfelder-Miller BJ, Turk AN, Carroll AJ, et al. Tamoxifen inhibits malignant peripheral nerve sheath tumor growth in an estrogen receptor-independent manner. Neuro Oncol. 2011;13:28–41.

    Article  CAS  PubMed  Google Scholar 

  91. Imaizumi S, Motoyama T, Ogose A, Hotta T, Takahashi HE. Characterization and chemosensitivity of two human malignant peripheral nerve sheath tumour cell lines derived from a patient with neurofibromatosis type 1. Virchows Arch. 1998;433:435–41.

    Article  CAS  PubMed  Google Scholar 

  92. Hirokawa Y, Nakajima H, Hanemann CO, Kurtz A, Frahm S, Mautner V, et al. Signal therapy of NF1-deficient tumor xenograft in mice by the anti-PAK1 drug FK228. Cancer Biol Ther. 2005;4:379–81.

    Article  CAS  PubMed  Google Scholar 

  93. Ohishi J, Aoki M, Nabeshima K, Suzumiya J, Takeuchi T, Ogose A, et al. Imatinib mesylate inhibits cell growth of malignant peripheral nerve sheath tumors in vitro and in vivo through suppression of PDGFR-beta. BMC Cancer. 2013;13:224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang W, Lin W, Hong B, Li X, Zhang M, Zhang L, et al. Effect of triptolide on malignant peripheral nerve sheath tumours in vitro and in vivo. J Int Med Res. 2012;40:2284–94.

    Article  CAS  PubMed  Google Scholar 

  95. Deyle DR, Escobar DZ, Peng KW, Babovic-Vuksanovic D. Oncolytic measles virus as a novel therapy for malignant peripheral nerve sheath tumors. Gene. 2015;565:140–5.

    Article  CAS  PubMed  Google Scholar 

  96. Maldonado AR, Klanke C, Jegga AG, Aronow BJ, Mahller YY, Cripe TP, et al. Molecular engineering and validation of an oncolytic herpes simplex virus type 1 transcriptionally targeted to midkine-positive tumors. J Gene Med. 2010;12:613–23.

    Article  CAS  PubMed  Google Scholar 

  97. Rahrmann EP, Watson AL, Keng VW, Choi K, Moriarity BS, Beckmann DA, et al. Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet. 2013;45:756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Watson AL, Rahrmann EP, Moriarity BS, Choi K, Conboy CB, Greeley AD, et al. Canonical Wnt/beta-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discov. 2013;3:674–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li H, Chang LJ, Neubauer DR, Muir DF, Wallace MR. Immortalization of human normal and NF1 neurofibroma Schwann cells. Lab Investig. 2016;96:1105–15.

    Article  CAS  PubMed  Google Scholar 

  100. Kraniak JM, Chalasani A, Wallace MR, Mattingly RR. Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening. Exp Neurol. 2018;299:289–98.

    Article  CAS  PubMed  Google Scholar 

  101. Moll C, Reboredo J, Schwarz T, Appelt A, Schurlein S, Walles H, et al. Tissue engineering of a human 3D in vitro tumor test system. J Vis Exp. 2013;78:50460.

  102. The I, Hannigan GE, Cowley GS, Reginald S, Zhong Y, Gusella JF, et al. Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science. 1997;276:791–4.

    Article  CAS  PubMed  Google Scholar 

  103. Guo HF, Tong J, Hannan F, Luo L, Zhong Y. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature. 2000;403:895–8.

    Article  CAS  PubMed  Google Scholar 

  104. Ho IS, Hannan F, Guo HF, Hakker I, Zhong Y. Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. J Neurosci. 2007;27:6852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Buchanan ME, Davis RL. A distinct set of Drosophila brain neurons required for neurofibromatosis type 1-dependent learning and memory. J Neurosci. 2010;30:10135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gouzi JY, Moressis A, Walker JA, Apostolopoulou AA, Palmer RH, Bernards A, et al. The receptor tyrosine kinase Alk controls neurofibromin functions in Drosophila growth and learning. PLoS Genet. 2011;7:e1002281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. van der Voet M, Harich B, Franke B, Schenck A. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol Psychiatry. 2016;21:565–73.

    Article  PubMed  CAS  Google Scholar 

  108. King LB, Koch M, Murphy KR, Velazquez Y, Ja WW, Tomchik SM. Neurofibromin loss of function drives excessive grooming in Drosophila. G3. 2016;6:1083–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Walker JA, Gouzi JY, Long JB, Huang S, Maher RC, Xia H, et al. Genetic and functional studies implicate synaptic overgrowth and ring gland cAMP/PKA signaling defects in the Drosophila melanogaster neurofibromatosis-1 growth deficiency. PLoS Genet. 2013;9:e1003958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Guo HF, The I, Hannan F, Bernards A, Zhong Y. Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science. 1997;276:795–8.

    Article  CAS  PubMed  Google Scholar 

  111. Williams JA, Su HS, Bernards A, Field J, Sehgal A. A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science. 2001;293:2251–6.

    Article  CAS  PubMed  Google Scholar 

  112. King LB, Boto T, Botero V, Aviles AM, Jomsky BM, Joseph C, et al. Developmental loss of neurofibromin across distributed neuronal circuits drives excessive grooming in Drosophila. PLoS Genet. 2020;16:e1008920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci. 2002;5:95–96.

    Article  CAS  PubMed  Google Scholar 

  114. MacInnes AW, Amsterdam A, Whittaker CA, Hopkins N, Lees JA. Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. Proc Natl Acad Sci USA. 2008;105:10408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shin J, Padmanabhan A, de Groh ED, Lee JS, Haidar S, Dahlberg S, et al. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Dis Model Mech. 2012;5:881–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ki DH, Oppel F, Durbin AD, Look AT. Mechanisms underlying synergy between DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors in NF1-associated malignant peripheral nerve sheath tumors. Oncogene. 2019;38:6585–98.

    Article  CAS  PubMed  Google Scholar 

  117. Oppel F, Tao T, Shi H, Ross KN, Zimmerman MW, He S, et al. Loss of atrx cooperates with p53-deficiency to promote the development of sarcomas and other malignancies. PLoS Genet. 2019;15:e1008039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Astone M, Pizzi M, Peron M, Domenichini A, Guzzardo V, Tochterle S, et al. A GFP-tagged gross deletion on chromosome 1 causes malignant peripheral nerve sheath tumors and carcinomas in Zebrafish. PLoS ONE. 2015;10:e0145178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kumari R, Silic MR, Jones-Hall YL, Nin-Velez A, Yang JY, Mittal SK, et al. Identification of RECK as an evolutionarily conserved tumor suppressor gene for zebrafish malignant peripheral nerve sheath tumors. Oncotarget. 2018;9:23494–504.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Reilly KM, Kim A, Blakely J, Ferner RE, Gutmann DH, Legius E, et al. Neurofibromatosis type 1-associated MPNST state of the science: outlining a research agenda for the future. J Natl Cancer Inst. 2017;109.

  121. Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet. 1994;7:353–61.

    Article  CAS  PubMed  Google Scholar 

  122. Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 1994;8:1019–29.

    Article  CAS  PubMed  Google Scholar 

  123. Joseph NM, Mosher JT, Buchstaller J, Snider P, McKeever PE, Lim M, et al. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell. 2008;13:129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54:4855–78.

    CAS  PubMed  Google Scholar 

  125. Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF. Mouse tumor model for neurofibromatosis type 1. Science. 1999;286:2176–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME, et al. Mouse models of tumor development in neurofibromatosis type 1. Science. 1999;286:2172–6.

    Article  CAS  PubMed  Google Scholar 

  127. Reilly KM, Tuskan RG, Christy E, Loisel DA, Ledger J, Bronson RT, et al. Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc Natl Acad Sci USA. 2004;101:13008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Johannessen CM, Johnson BW, Williams SM, Chan AW, Reczek EE, Lynch RC, et al. TORC1 is essential for NF1-associated malignancies. Curr Biol. 2008;18:56–62.

    Article  CAS  PubMed  Google Scholar 

  129. Malone CF, Fromm JA, Maertens O, DeRaedt T, Ingraham R, Cichowski K. Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Cancer Discov. 2014;4:1062–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lock R, Ingraham R, Maertens O, Miller AL, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Investig. 2016;126:2181–90.

    Article  PubMed  PubMed Central  Google Scholar 

  131. De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF, et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell. 2011;20:400–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Mo W, Chen J, Patel A, Zhang L, Chau V, Li Y, et al. CXCR4/CXCL12 mediate autocrine cell- cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell. 2013;152:1077–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huijbregts RP, Roth KA, Schmidt RE, Carroll SL. Hypertrophic neuropathies and malignant peripheral nerve sheath tumors in transgenic mice overexpressing glial growth factor beta3 in myelinating Schwann cells. J Neurosci. 2003;23:7269–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kazmi SJ, Byer SJ, Eckert JM, Turk AN, Huijbregts RP, Brossier NM, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182:646–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Keng VW, Rahrmann EP, Watson AL, Tschida BR, Moertel CL, Jessen WJ, et al. PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors. Cancer Res. 2012;72:3405–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rhodes SD, He Y, Smith A, Jiang L, Lu Q, Mund J, et al. Cdkn2a (Arf) loss drives NF1-associated atypical neurofibroma and malignant transformation. Hum Mol Genet. 2019;28:2752–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gregorian C, Nakashima J, Dry SM, Nghiemphu PL, Smith KB, Ao Y, et al. PTEN dosage is essential for neurofibroma development and malignant transformation. Proc Natl Acad Sci USA. 2009;106:19479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Keng VW, Watson AL, Rahrmann EP, Li H, Tschida BR, Moriarity BS, et al. Conditional inactivation of Pten with EGFR overexpression in Schwann cells models sporadic MPNST. Sarcoma. 2012;2012:620834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Rahrmann EP, Moriarity BS, Otto GM, Watson AL, Choi K, Collins MH, et al. Trp53 haploinsufficiency modifies EGFR-driven peripheral nerve sheath tumorigenesis. Am J Pathol. 2014;184:2082–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dodd RD, Mito JK, Eward WC, Chitalia R, Sachdeva M, Ma Y, et al. NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition. Mol Cancer Ther. 2013;12:1906–17.

    Article  CAS  PubMed  Google Scholar 

  141. Dodd RD, Lee CL, Overton T, Huang W, Eward WC, Luo L, et al. NF1(+/-) hematopoietic cells accelerate malignant peripheral nerve sheath tumor development without altering chemotherapy response. Cancer Res. 2017;77:4486–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huang J, Chen M, Whitley MJ, Kuo HC, Xu ES, Walens A, et al. Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma. Nat Commun. 2017;8:15999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hirbe AC, Dahiya S, Friedmann-Morvinski D, Verma IM, Clapp DW, Gutmann DH. Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor Nf1 gene loss to promote malignant peripheral nerve sheath tumor formation. Oncotarget. 2016;7:7403–14.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6:114–8.

    PubMed  PubMed Central  Google Scholar 

  145. Bhola P, Banerjee S, Mukherjee J, Balasubramanium A, Arun V, Karim Z, et al. Preclinical in vivo evaluation of rapamycin in human malignant peripheral nerve sheath explant xenograft. Int J Cancer. 2010;126:563–71.

    Article  CAS  PubMed  Google Scholar 

  146. Takamiya Y, Friedlander RM, Brem H, Malick A, Martuza RL. Inhibition of angiogenesis and growth of human nerve-sheath tumors by AGM-1470. J Neurosurg. 1993;78:470–6.

    Article  CAS  PubMed  Google Scholar 

  147. Castellsague J, Gel B, Fernandez-Rodriguez J, Llatjos R, Blanco I, Benavente Y, et al. Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine. EMBO Mol Med. 2015;7:608–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pollard K, Banerjee J, Doan X, Wang J, Guo X, Allaway R, et al. A clinically and genomically annotated nerve sheath tumor biospecimen repository. Sci Data. 2020;7:184.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Inoue A, Deem AK, Kopetz S, Heffernan TP, Draetta GF, Carugo A. Current and future horizons of patient-derived xenograft models in colorectal cancer translational research. Cancers. 2019;11:1321.

  150. Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13:4.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  152. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  153. Carrio M, Mazuelas H, Richaud-Patin Y, Gel B, Terribas E, Rosas I, et al. Reprogramming captures the genetic and tumorigenic properties of neurofibromatosis type 1 plexiform neurofibromas. Stem Cell Rep. 2019;12:411–26.

    Article  CAS  Google Scholar 

  154. Anastasaki C, Wegscheid ML, Hartigan K, Papke JB, Kopp ND, Chen J, et al. Human iPSC-derived neurons and cerebral organoids establish differential effects of germline NF1 gene mutations. Stem Cell Rep. 2020;14:541–50.

    Article  CAS  Google Scholar 

  155. Wegscheid ML, Anastasaki C, Gutmann DH. Human stem cell modeling in neurofibromatosis type 1 (NF1). Exp Neurol. 2018;299:270–80.

    Article  CAS  PubMed  Google Scholar 

  156. Mo J, Anastasaki C, Chen Z, Shipman T, Papke J, Yin K, et al. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Investig. 2021;131:e139807.

  157. Williams KB, Largaespada DA. New model systems and the development of targeted therapies for the treatment of neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Genes 2020;11:477.

  158. Zou C, Smith KD, Liu J, Lahat G, Myers S, Wang WL, et al. Clinical, pathological, and molecular variables predictive of malignant peripheral nerve sheath tumor outcome. Ann Surg. 2009;249:1014–22.

    Article  PubMed  Google Scholar 

  159. Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 2005;65:2755–60.

    Article  CAS  PubMed  Google Scholar 

  160. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA. 2005;102:8573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Endo M, Yamamoto H, Setsu N, Kohashi K, Takahashi Y, Ishii T, et al. Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors. Clin Cancer Res. 2013;19:450–61.

    Article  CAS  PubMed  Google Scholar 

  163. Bradtmoller M, Hartmann C, Zietsch J, Jaschke S, Mautner VF, Kurtz A, et al. Impaired Pten expression in human malignant peripheral nerve sheath tumours. PLoS ONE. 2012;7:e47595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Misra JR, Irvine KD. The Hippo signaling network and its biological functions. Annu Rev Genet. 2018;52:65–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wu LMN, Deng Y, Wang J, Zhao C, Wang J, Rao R, et al. Programming of Schwann cells by Lats1/2-TAZ/YAP signaling drives malignant peripheral nerve sheath tumorigenesis. Cancer Cell. 2018;33:292–308 e297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Isfort I, Elges S, Cyra M, Berthold R, Renner M, Mechtersheimer G, et al. Prevalence of the Hippo effectors YAP1/TAZ in tumors of soft tissue and bone. Sci Rep. 2019;9:19704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 2017;51:1357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Luscan A, Shackleford G, Masliah-Planchon J, Laurendeau I, Ortonne N, Varin J, et al. The activation of the WNT signaling pathway is a Hallmark in neurofibromatosis type 1 tumorigenesis. Clin Cancer Res. 2014;20:358–71.

    Article  CAS  PubMed  Google Scholar 

  169. Thomson CS, Pundavela J, Perrino MR, Coover RA, Choi K, Chaney KE, et al. WNT5A inhibition alters the malignant peripheral nerve sheath tumor microenvironment and enhances tumor growth. Oncogene. 2021;40:4229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002;296:920–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, et al. Nf1-dependent tumors require a microenvironment containing Nf1+/— and c-kit-dependent bone marrow. Cell. 2008;135:437–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D, et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell. 2008;13:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Scaife CL, Pisters PW. Combined-modality treatment of localized soft tissue sarcomas of the extremities. Surg Oncol Clin N Am. 2003;12:355–68.

    Article  PubMed  Google Scholar 

  174. Gupta G, Mammis A, Maniker A. Malignant peripheral nerve sheath tumors. Neurosurg Clin N Am. 2008;19:533–43. v

    Article  PubMed  Google Scholar 

  175. Martin E, Coert JH, Flucke UE, Slooff WM, van de Sande MAJ, van Noesel MM, et al. Neurofibromatosis-associated malignant peripheral nerve sheath tumors in children have a worse prognosis: a nationwide cohort study. Pediatr Blood Cancer. 2020;67:e28138.

    Article  PubMed  Google Scholar 

  176. Garozzo D. Peripheral nerve tumors in neurofibromatosis 1: an overview on management and indications for surgical treatment in our experience. Neurol India. 2019;67:S38–S44.

    Article  PubMed  Google Scholar 

  177. Ferner RE, Golding JF, Smith M, Calonje E, Jan W, Sanjayanathan V, et al. [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol. 2008;19:390–4.

    Article  CAS  PubMed  Google Scholar 

  178. Mautner VF, Friedrich RE, von Deimling A, Hagel C, Korf B, Knofel MT, et al. Malignant peripheral nerve sheath tumours in neurofibromatosis type 1: MRI supports the diagnosis of malignant plexiform neurofibroma. Neuroradiology. 2003;45:618–25.

    Article  CAS  PubMed  Google Scholar 

  179. Suratwala SJ, Kondra K, Cronin M, Leone V. Malignant peripheral nerve sheath tumor of the sciatic nerve presenting with leg pain in the setting of lumbar scoliosis and spinal stenosis. Spine Deform. 2020;8:333–8.

    Article  PubMed  Google Scholar 

  180. Ferner RE, Lucas JD, O'Doherty MJ, Hughes RA, Smith MA, Cronin BF, et al. Evaluation of (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in the detection of malignant peripheral nerve sheath tumours arising from within plexiform neurofibromas in neurofibromatosis 1. J Neurol Neurosurg Psychiatry. 2000;68:353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Widemann BC, Italiano A. Biology and management of undifferentiated pleomorphic sarcoma, myxofibrosarcoma, and malignant peripheral nerve sheath tumors: state of the art and perspectives. J Clin Oncol. 2018;36:160–7.

    Article  CAS  PubMed  Google Scholar 

  182. Tovmassian D, Abdul Razak M, London K. The Role of [(18)F]FDG-PET/CT in predicting malignant transformation of plexiform neurofibromas in neurofibromatosis-1. Int J Surg Oncol. 2016;2016:6162182.

    PubMed  PubMed Central  Google Scholar 

  183. Ahlawat S, Blakeley JO, Langmead S, Belzberg AJ, Fayad LM. Current status and recommendations for imaging in neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Skelet Radio. 2020;49:199–219.

    Article  Google Scholar 

  184. Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 2002;62:1573–7.

    CAS  PubMed  Google Scholar 

  185. Dunn GP, Spiliopoulos K, Plotkin SR, Hornicek FJ, Harmon DC, Delaney TF, et al. Role of resection of malignant peripheral nerve sheath tumors in patients with neurofibromatosis type 1. J Neurosurg. 2013;118:142–8.

    Article  PubMed  Google Scholar 

  186. Gachiani J, Kim D, Nelson A, Kline D. Surgical management of malignant peripheral nerve sheath tumors. Neurosurg Focus. 2007;22:E13.

    Article  PubMed  Google Scholar 

  187. Levi AD, Ross AL, Cuartas E, Qadir R, Temple HT. The surgical management of symptomatic peripheral nerve sheath tumors. Neurosurgery. 2010;66:833–40.

    Article  PubMed  Google Scholar 

  188. Yang JC, Chang AE, Baker AR, Sindelar WF, Danforth DN, Topalian SL, et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol. 1998;16:197–203.

    Article  CAS  PubMed  Google Scholar 

  189. O’Sullivan B, Davis AM, Turcotte R, Bell R, Catton C, Chabot P, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet. 2002;359:2235–41.

    Article  PubMed  Google Scholar 

  190. Kahn J, Gillespie A, Tsokos M, Ondos J, Dombi E, Camphausen K, et al. Radiation therapy in management of sporadic and neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Front Oncol. 2014;4:324.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Arshi A, Tajudeen BA, St John M. Malignant peripheral nerve sheath tumors of the head and neck: Demographics, clinicopathologic features, management, and treatment outcomes. Oral Oncol. 2015;51:1088–94.

    Article  PubMed  Google Scholar 

  192. Kar M, Deo SV, Shukla NK, Malik A, DattaGupta S, Mohanti BK, et al. Malignant peripheral nerve sheath tumors (MPNST)—clinicopathological study and treatment outcome of twenty-four cases. World J Surg Oncol. 2006;4:55.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Bhatia S, Chen Y, Wong FL, Hageman L, Smith K, Korf B, et al. Subsequent neoplasms after a primary tumor in individuals with neurofibromatosis type 1. J Clin Oncol. 2019;37:3050–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Nakamura JL, Phong C, Pinarbasi E, Kogan SC, Vandenberg S, Horvai AE, et al. Dose-dependent effects of focal fractionated irradiation on secondary malignant neoplasms in Nf1 mutant mice. Cancer Res. 2011;71:106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chou D, Bilsky MH, Luzzati A, Fisher CG, Gokaslan ZL, Rhines LD, et al. Malignant peripheral nerve sheath tumors of the spine: results of surgical management from a multicenter study. J Neurosurg Spine. 2017;26:291–8.

    Article  PubMed  Google Scholar 

  196. Ferrari A, Miceli R, Rey A, Oberlin O, Orbach D, Brennan B, et al. Non-metastatic unresected paediatric non-rhabdomyosarcoma soft tissue sarcomas: results of a pooled analysis from United States and European groups. Eur J Cancer. 2011;47:724–31.

    Article  PubMed  Google Scholar 

  197. Tierney JF. Adjuvant chemotherapy for localised resectable soft-tissue sarcoma of adults: meta-analysis of individual data. Sarcoma Meta-analysis Collaboration. Lancet. 1997;350:1647–54.

    Article  Google Scholar 

  198. Higham CS, Steinberg SM, Dombi E, Perry A, Helman LJ, Schuetze SM, et al. SARC006: Phase II trial of chemotherapy in sporadic and neurofibromatosis type 1 associated chemotherapy-naive malignant peripheral nerve sheath tumors. Sarcoma. 2017;2017:8685638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Carli M, Ferrari A, Mattke A, Zanetti I, Casanova M, Bisogno G, et al. Pediatric malignant peripheral nerve sheath tumor: the Italian and German soft tissue sarcoma cooperative group. J Clin Oncol. 2005;23:8422–30.

    Article  PubMed  Google Scholar 

  200. Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007;19:117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer. 2018;17:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Regad T, Targeting RTK. Signaling pathways in cancer. Cancers. 2015;7:1758–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chugh R, Wathen JK, Maki RG, Benjamin RS, Patel SR, Meyers PA, et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J Clin Oncol. 2009;27:3148–53.

    Article  CAS  PubMed  Google Scholar 

  205. Schuetze SM, Wathen JK, Lucas DR, Choy E, Samuels BL, Staddon AP, et al. SARC009: Phase 2 study of dasatinib in patients with previously treated, high-grade, advanced sarcoma. Cancer. 2016;122:868–74.

    Article  CAS  PubMed  Google Scholar 

  206. Li H, Velasco-Miguel S, Vass WC, Parada LF, DeClue JE. Epidermal growth factor receptor signaling pathways are associated with tumorigenesis in the Nf1:p53 mouse tumor model. Cancer Res. 2002;62:4507–13.

    CAS  PubMed  Google Scholar 

  207. Tabone-Eglinger S, Bahleda R, Cote JF, Terrier P, Vidaud D, Cayre A, et al. Frequent EGFR positivity and overexpression in high-grade areas of human MPNSTs. Sarcoma. 2008;2008:849156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Albritton KH, Rankin C, Coffin CM, Ratner N, Budd GT, Schuetze SM, et al. Phase II study of erlotinib in metastatic or unresectable malignant peripheral nerve sheath tumors (MPNST). J Clin Oncol. 2006;24:9518–9518.

    Article  Google Scholar 

  209. Widemann BC, Lu Y, Reinke D, Okuno SH, Meyer CF, Cote GM, et al. Targeting sporadic and neurofibromatosis type 1 (NF1) related refractory malignant peripheral nerve sheath tumors (MPNST) in a phase II study of everolimus in combination with Bevacizumab (SARC016). Sarcoma. 2019;2019:7656747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Ohba Y, Mochizuki N, Yamashita S, Chan AM, Schrader JW, Hattori S, et al. Regulatory proteins of R-Ras, TC21/R-Ras2, and M-Ras/R-Ras3. J Biol Chem. 2000;275:20020–6.

    Article  CAS  PubMed  Google Scholar 

  211. Cox AD, Der CJ. Ras history: the saga continues. Small GTPases. 2010;1:2–27.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 2015;15:290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503:548–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kim HA, Ling B, Ratner N. Nf1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Mol Cell Biol. 1997;17:862–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wojtkowiak JW, Fouad F, LaLonde DT, Kleinman MD, Gibbs RA, Reiners JJ Jr, et al. Induction of apoptosis in neurofibromatosis type 1 malignant peripheral nerve sheath tumor cell lines by a combination of novel farnesyl transferase inhibitors and lovastatin. J Pharmacol Exp Ther. 2008;326:1–11.

    Article  CAS  PubMed  Google Scholar 

  216. Widemann BC, Salzer WL, Arceci RJ, Blaney SM, Fox E, End D, et al. Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol. 2006;24:507–16.

    Article  CAS  PubMed  Google Scholar 

  217. Widemann BC, Dombi E, Gillespie A, Wolters PL, Belasco J, Goldman S, et al. Phase 2 randomized, flexible crossover, double-blinded, placebo-controlled trial of the farnesyltransferase inhibitor tipifarnib in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Neuro Oncol. 2014;16:707–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol. 2012;4:a011254.

  219. Ambrosini G, Cheema HS, Seelman S, Teed A, Sambol EB, Singer S, et al. Sorafenib inhibits growth and mitogen-activated protein kinase signaling in malignant peripheral nerve sheath cells. Mol Cancer Ther. 2008;7:890–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Maki RG, D'Adamo DR, Keohan ML, Saulle M, Schuetze SM, Undevia SD, et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol. 2009;27:3133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Investig. 2013;123:340–7.

    Article  CAS  PubMed  Google Scholar 

  222. Markham A, Keam SJ. Selumetinib: first approval. Drugs. 2020;80:931–7.

    Article  CAS  PubMed  Google Scholar 

  223. Nagabushan S, Lau LMS, Barahona P, Wong M, Sherstyuk A, Marshall GM, et al. Efficacy of MEK inhibition in a recurrent malignant peripheral nerve sheath tumor. NPJ Precis Oncol. 2021;5:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Johansson G, Mahller YY, Collins MH, Kim MO, Nobukuni T, Perentesis J, et al. Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Mol Cancer Ther. 2008;7:1237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Weiss B, Widemann BC, Wolters P, Dombi E, Vinks A, Cantor A, et al. Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a neurofibromatosis Clinical Trials Consortium phase II study. Neuro Oncol. 2015;17:596–603.

    Article  CAS  PubMed  Google Scholar 

  226. Varin J, Poulain L, Hivelin M, Nusbaum P, Hubas A, Laurendeau I, et al. Dual mTORC1/2 inhibition induces anti-proliferative effect in NF1-associated plexiform neurofibroma and malignant peripheral nerve sheath tumor cells. Oncotarget. 2016;7:35753–67.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Watson AL, Anderson LK, Greeley AD, Keng VW, Rahrmann EP, Halfond AL, et al. Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity. Oncotarget. 2014;5:1502–14.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Kim A, Lu Y, Okuno SH, Reinke D, Maertens O, Perentesis J, et al. Targeting refractory sarcomas and malignant peripheral nerve sheath tumors in a phase I/II study of sirolimus in combination with Ganetespib (SARC023). Sarcoma. 2020;2020:5784876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Malone CF, Emerson C, Ingraham R, Barbosa W, Guerra S, Yoon H, et al. mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors. Cancer Discov. 2017;7:1450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kohlmeyer JL, Kaemmer CA, Pulliam C, Maharjan CK, Samayoa AM, Major HJ, et al. RABL6A Is an essential driver of MPNSTs that negatively regulates the RB1 pathway and sensitizes tumor cells to CDK4/6 inhibitors. Clin Cancer Res. 2020;26:2997–3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Cleven AH, Sannaa GA, Briaire-de Bruijn I, Ingram DR, van de Rijn M, Rubin BP, et al. Loss of H3K27 tri-methylation is a diagnostic marker for malignant peripheral nerve sheath tumors and an indicator for an inferior survival. Mod Pathol. 2016;29:582–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Guo J, Chaney KE, Choi K, Witek G, Patel AV, Xie H, et al. Polo-like kinase 1 as a therapeutic target for malignant peripheral nerve sheath tumors (MPNST) and schwannomas. Am J Cancer Res. 2020;10:856–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Williams KB, Williams RL, Rathe SK, Hawkinson J, Largaespada DA. Abstract A37: Synthetic lethality as a tool to reveal novel vulnerabilities in NF1-associated tumorigenesis. Mol Cancer Therapeutics. 2017;16:A37–A37.

    Article  Google Scholar 

  234. Castells-Roca L, Tejero E, Rodriguez-Santiago B, Surralles J. CRISPR screens in synthetic lethality and combinatorial therapies for cancer. Cancers. 2021;13:1591.

  235. Semenova G, Stepanova DS, Deyev SM, Chernoff J. Medium throughput biochemical compound screening identifies novel agents for pharmacotherapy of neurofibromatosis type 1. Biochimie. 2017;135:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wood M, Rawe M, Johansson G, Pang S, Soderquist RS, Patel AV, et al. Discovery of a small molecule targeting IRA2 deletion in budding yeast and neurofibromin loss in malignant peripheral nerve sheath tumor cells. Mol Cancer Ther. 2011;10:1740–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Kahen EJ, Brohl A, Yu D, Welch D, Cubitt CL, Lee JK, et al. Neurofibromin level directs RAS pathway signaling and mediates sensitivity to targeted agents in malignant peripheral nerve sheath tumors. Oncotarget. 2018;9:22571–85.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Cooper JM, Patel AJ, Chen Z, Liao CP, Chen K, Mo J, et al. Overcoming BET inhibitor resistance in malignant peripheral nerve sheath tumors. Clin Cancer Res. 2019;25:3404–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Mashour GA, Drissel SN, Frahm S, Farassati F, Martuza RL, Mautner VF, et al. Differential modulation of malignant peripheral nerve sheath tumor growth by omega-3 and omega-6 fatty acids. Oncogene. 2005;24:2367–74.

    Article  CAS  PubMed  Google Scholar 

  240. Lopez G, Torres K, Liu J, Hernandez B, Young E, Belousov R, et al. Autophagic survival in resistance to histone deacetylase inhibitors: novel strategies to treat malignant peripheral nerve sheath tumors. Cancer Res. 2011;71:185–96.

    Article  CAS  PubMed  Google Scholar 

  241. Reuss DE, Mucha J, Hagenlocher C, Ehemann V, Kluwe L, Mautner V, et al. Sensitivity of malignant peripheral nerve sheath tumor cells to TRAIL is augmented by loss of NF1 through modulation of MYC/MAD and is potentiated by curcumin through induction of ROS. PLoS ONE. 2013;8:e57152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Mahller YY, Vaikunth SS, Ripberger MC, Baird WH, Saeki Y, Cancelas JA, et al. Tissue inhibitor of metalloproteinase-3 via oncolytic herpesvirus inhibits tumor growth and vascular progenitors. Cancer Res. 2008;68:1170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Li Y, Rao PK, Wen R, Song Y, Muir D, Wallace P, et al. Notch and Schwann cell transformation. Oncogene. 2004;23:1146–52.

    Article  CAS  PubMed  Google Scholar 

  244. Glover TW, Stein CK, Legius E, Andersen LB, Brereton A, Johnson S. Molecular and cytogenetic analysis of tumors in von Recklinghausen neurofibromatosis. Genes Chromosomes Cancer. 1991;3:62–70.

    Article  CAS  PubMed  Google Scholar 

  245. Yan N, Ricca C, Fletcher J, Glover T, Seizinger BR, Manne V. Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1) malignant phenotype. Cancer Res. 1995;55:3569–75.

    CAS  PubMed  Google Scholar 

  246. Mattingly RR, Kraniak JM, Dilworth JT, Mathieu P, Bealmear B, Nowak JE, et al. The mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD184352 (CI-1040) selectively induces apoptosis in malignant schwannoma cell lines. J Pharmacol Exp Ther. 2006;316:456–65.

    Article  CAS  PubMed  Google Scholar 

  247. Koelsche C, Renner M, Hartmann W, Brandt R, Lehner B, Waldburger N, et al. TERT promoter hotspot mutations are recurrent in myxoid liposarcomas but rare in other soft tissue sarcoma entities. J Exp Clin Cancer Res. 2014;33:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Teicher BA, Polley E, Kunkel M, Evans D, Silvers T, Delosh R, et al. Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression. Mol Cancer Ther. 2015;14:2452–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Lee PR, Cohen JE, Tendi EA, Farrer R, GH DEV, Becker KG, et al. Transcriptional profiling in an MPNST-derived cell line and normal human Schwann cells. Neuron Glia Biol. 2004;1:135–47.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Yi C, Troutman S, Fera D, Stemmer-Rachamimov A, Avila JL, Christian N, et al. A tight junction-associated Merlin-angiomotin complex mediates Merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell. 2011;19:527–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Subramanian S, Thayanithy V, West RB, Lee CH, Beck AH, Zhu S, et al. Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. J Pathol. 2010;220:58–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Nagashima Y, Ohaki Y, Tanaka Y, Sumino K, Funabiki T, Okuyama T, et al. Establishment of an epithelioid malignant schwannoma cell line (YST-1). Virchows Arch B Cell Pathol Incl Mol Pathol. 1990;59:321–7.

    Article  CAS  PubMed  Google Scholar 

  253. Dahlberg WK, Little JB, Fletcher JA, Suit HD, Okunieff P. Radiosensitivity in vitro of human soft tissue sarcoma cell lines and skin fibroblasts derived from the same patients. Int J Radiat Biol. 1993;63:191–8.

    Article  CAS  PubMed  Google Scholar 

  254. Sonobe H, Takeuchi T, Furihata M, Taguchi T, Kawai A, Ohjimi Y, et al. A new human malignant peripheral nerve sheath tumour-cell line, HS-sch-2, harbouring p53 point mutation. Int J Oncol. 2000;17:347–52.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

LQL held a Career Award for Medical Scientists from the Burroughs Wellcome Fund and is the Thomas L. Shield, M.D. endowed Professor in Dermatology. He is supported by funding from the US Department of Defense (NF210010), the National Cancer Institute of the NIH (R01 CA166593), and the Developmental and Hyperactive RAS Tumor SPORE (U54 CA196519); the Neurofibromatosis Therapeutic Acceleration Program; the NF1 Research Consortium Fund; and the Giorgio Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Writing – original draft: BNS, AS, RMM, and LQL; Writing – review and editing: BNS, RMM, and LQL.

Corresponding author

Correspondence to Lu Q. Le.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to publish

There are no enrolled patients in this review and all authors provided consent for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somatilaka, B.N., Sadek, A., McKay, R.M. et al. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 41, 2405–2421 (2022). https://doi.org/10.1038/s41388-022-02290-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02290-1

This article is cited by

Search

Quick links