Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacologic conversion of cancer-associated fibroblasts from a protumor phenotype to an antitumor phenotype improves the sensitivity of pancreatic cancer to chemotherapeutics

A Correction to this article was published on 04 May 2022

This article has been updated

Abstract

Previous therapeutic attempts to deplete cancer-associated fibroblasts (CAFs) or inhibit their proliferation in pancreatic ductal adenocarcinoma (PDAC) were not successful in mice or patients. Thus, CAFs may be tumor suppressive or heterogeneous, with distinct cancer-restraining and -promoting CAFs (rCAFs and pCAFs, respectively). Here, we showed that induced expression of the glycosylphosphatidylinositol-anchored protein Meflin, a rCAF-specific marker, in CAFs by genetic and pharmacological approaches improved the chemosensitivity of mouse PDAC. A chemical library screen identified Am80, a synthetic, nonnatural retinoid, as a reagent that effectively induced Meflin expression in CAFs. Am80 administration improved the sensitivity of PDAC to chemotherapeutics, accompanied by increases in tumor vessel area and intratumoral drug delivery. Mechanistically, Meflin was involved in the suppression of tissue stiffening by interacting with lysyl oxidase to inhibit its collagen crosslinking activity. These data suggested that modulation of CAF heterogeneity may represent a strategy for PDAC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Numbers of Meflin+ stromal cells correlated with response of patients with PDAC to chemotherapeutics and tumor vessel area.
Fig. 2: SeV-mediated transduction of Meflin induced increases in tumor vessel area and sensitivity to Gem.
Fig. 3: Effects of Am80 administration on the expression of Meflin in CAFs and on tumor vessel area in a PDAC xenograft mouse model.
Fig. 4: Am80 administration improved tumor sensitivity to Gem and induced Meflin expression in CAFs in a subcutaneous PDAC xenograft mouse model.
Fig. 5: Am80 administration improved tumor sensitivity to Gem and induced Meflin expression in CAFs in an orthotopic PDAC xenograft mouse model.
Fig. 6: Increased tumor chemosensitivity by Am80 administration was mediated by alterations in Meflin expression in CAFs.
Fig. 7: Meflin was involved in the regulation of Lox activity and collagen remodeling.

Similar content being viewed by others

Change history

References

  1. Apte MV, Park S, Phillips PA, Santucci N, Goldstein D, Kumar RK, et al. Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas. 2004;29:179–87.

    Article  CAS  PubMed  Google Scholar 

  2. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, et al. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 2019;68:159–71.

    Article  CAS  PubMed  Google Scholar 

  4. Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014;211:1503–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts—heroes or villains? Br J Cancer. 2019;121:293–302.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2019;16:282–95.

    Article  PubMed  Google Scholar 

  7. Miyai Y, Esaki N, Takahashi M, Enomoto A. Cancer-associated fibroblasts that restrain cancer progression: hypotheses and perspectives. Cancer Sci. 2020;111:1047–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99:186–96.

    Article  CAS  PubMed  Google Scholar 

  9. Mezawa Y, Orimo A. The roles of tumor-and metastasis-promoting carcinoma-associated fibrolasts in human carcinomas. Cell Tissue Res. 2016;365:675–89.

    Article  CAS  PubMed  Google Scholar 

  10. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–34.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci USA. 2014;111:E3091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, et al. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J Clin Investig. 2021;131:e146987.

    Article  CAS  PubMed Central  Google Scholar 

  14. Chen Y, Kim J, Yang S, Wang H, Wu CJ, Sugimoto H, et al. Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell. 2021;39:548–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 2019;9:282–301.

    Article  PubMed  Google Scholar 

  16. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9:1102–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214:579–96.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shi Y, Gao W, Lytle NK, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagathihalli NS, Castellanos JA, VanSaun MN, Dai X, Ambrose M, Guo Q, et al. Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget. 2016;7:65982–92.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mizutani Y, Kobayashi H, Iida T, Asai N, Masamune A, Akitoshi H, et al. Meflin-positive cancer-associated fibroblasts inhibit pancreatic carcinogenesis. Cancer Res. 2019;79:5367–81.

    Article  CAS  PubMed  Google Scholar 

  21. Maeda K, Enomoto A, Hara A, Asai N, Kobayashi T, Horinouchi A, et al. Identification of Meflin as a potential marker for mesenchymal stromal cells. Sci Rep. 2016;6:22288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takahashi M, Kobayashi H, Mizutani Y, Hara A, Iida T, Miya Y, et al. Roles of the mesenchymal stromal/stem cell marker Meflin/Islr in cancer fibrosis. Front Cell Dev Biol. 2021;9:749924.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hara A, Kato K, Ishihara T, Kobayashi H, Asai N, Mii S, et al. Meflin defines mesenchymal stem cells and/or their early progenitors with multilineage differentiation capacity. Genes Cells. 2021;26:495–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neuzillet C, Tijeras-Raballand A, Ragulan C, Cros J, Patil Y, Martinet M, et al. Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J Pathol. 2019;248:51–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Waghray M, Yalamanchili M, Dziubinski M, Zeinali M, Erkkinen M, Yang H, et al. GM-CSF mediates mesenchymal–epithelial cross-talk in pancreatic cancer. Cancer Discov. 2016;6:886–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38.

    Article  CAS  PubMed  Google Scholar 

  28. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7:469–83.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang D, Li L, Jiang H, Li Q, Wang-Gillam A, Yu J, et al. Tumor-stroma IL1β-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer. Cancer Res. 2018;78:1700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324:1457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159:80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V, Lachowski D, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun. 2016;7:12630.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kocher HM, Basu B, Froeling FEM, Sarker D, Slater S, Carlin D, et al. Phase I clinical trial repurposing all-trans retinoic acid as a stromal targeting agent for pancreatic cancer. Nat Commun. 2020;11:4841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kagechika H, Kawachi E, Hashimoto Y, Shudo K. New type inducers of differentiation of human HL-60 promyelocytic leukemia cells. Terephthalic anilides. Chem Pharm Bull. 1984;32:4209–12.

    Article  CAS  Google Scholar 

  35. Kagechika H. Novel synthetic retinoids and separation of the pleiotropic retinoidal activities. Curr Med Chem. 2002;9:591–608.

    Article  CAS  PubMed  Google Scholar 

  36. Tobita T, Takeshita A, Kitamura K, Ohnishi K, Yanagi M, Hiraoka A, et al. Treatment with a new synthetic retinoid, Am80, of acute promyelocytic leukemia relapsed from complete remission induced by all-trans retinoic acid. Blood. 1997;90:967–73.

    Article  CAS  PubMed  Google Scholar 

  37. Hara A, Kobayashi H, Asai N, Saito S, Higuchi T, Kato K, et al. Roles of the mesenchymal stromal/stem cell marker Meflin in cardiac tissue repair and the development of diastolic dysfunction. Circ Res. 2019;125:414–30.

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi H, Gieniec KA, Wright JA, Wang T, Asai N, Mizutani Y, et al. The balance of stromal BMP signaling mediated by GREM1 and ISLR drives colorectal carcinogenesis. Gastroenterology. 2021;160:1224–39.

    Article  CAS  PubMed  Google Scholar 

  39. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139:891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barker HE, Cox TR, Erler J. The rationale for targeting the LOX family in cancer. Nat Rev Cancer. 2012;12:540–52.

    Article  CAS  PubMed  Google Scholar 

  41. Le Calvé B, Griveau A, Vindrieux D, Maréchal R, Wiel C, Svrcek M, et al. Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution. Oncotarget. 2016;7:32100–12.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3–CCL2 signaling. Cancer Res. 2016;76:4124–35.

    Article  CAS  PubMed  Google Scholar 

  43. Puré E, Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene. 2018;37:4343–57.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    Article  PubMed  Google Scholar 

  45. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hashimoto Y, Kagechika H, Shudo K. Expression of retinoic acid receptor genes and the ligand-binding selectivity of retinoic acid receptors (RAR’s). Biochem Biophys Res Commun. 1990;166:1300–7.

    Article  CAS  PubMed  Google Scholar 

  47. Tebben PJ, Singh RJ, Kumar R. Vitamin D-mediated hypercalcemia: mechanisms, diagnosis, and treatment. Endocr Rev. 2016;37:521–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klemann C, Raveney BJE, Klemann AK, Ozawa T, von Hörsten S, Shudo K, et al. Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encephalomyelitis. Am J Pathol. 2009;174:2234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takaomi S, Kuwano T, Nakao S, Iida S, Ishida T, Komatsu H, et al. Antimyeloma effects of a novel synthetic retinoid Am80 (Tamibarotene) through inhibition of angiogenesis. Leukemia. 2005;19:901–9.

    Article  Google Scholar 

  50. Zhang K, Zhang Y, Gu L, Lan M, Liu C, Wang M, et al. Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing Dishevelled-2 and preventing autophagy. Nat Commun. 2018;9:129.

    Article  Google Scholar 

  51. Xu J, Tang Y, Sheng X, Tian Y, Deng M, Du S, et al. Secreted stromal protein ISLR promotes intestinal regeneration by suppressing epithelial Hippo signaling. EMBO J. 2020;39:e103255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank David Tuveson (Cold Spring Harbor Laboratory) and Chang-il Hwang (UC Davis College of Biological Sciences) for providing the mouse PDAC cell line mT5; Kohji Kusano (ID Pharma Co., Ltd.) for generating recombinant Sendai virus; Shuzo Watanabe, Kaoru Shimada (RaQualia Pharma Inc.), and Hisao Ekimoto (TMRC Co., Ltd) for helpful discussions on Am80; Kentaro Taki (Nagoya University) for help with mass spectrometry; and Kozo Uchiyama and Kaori Ushida (Nagoya University) for technical assistance. This work was supported by a Grant-in-Aid for Scientific Research (B) (grant nos. 18H02638 to AE and 20H03467 to MT) commissioned by the Ministry of Education, Culture, Sports, Science and Technology of Japan; Nagoya University Hospital Funding for Clinical Research (to AE); AMED-CREST (Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology; grant nos. JP20gm0810007h0105 and JP20gm1210009s0102 to AE); and the Project for Cancer Research and Therapeutic Evolution (P-CREATE) from AMED (grant nos. JP20cm0106377h0001 to AE and JP21cm0106704h0002 to YM).

Author information

Authors and Affiliations

Authors

Contributions

TIi designed and performed the experiments, analyzed the data, and wrote the paper. YM and NE designed and performed the experiments and analyzed the data. SMP and BMB performed SHG analysis. LW performed the mass spectrometric analysis. KKu performed the measurement of intratumoral concentrations of dFdC. KKa, AM, TIs, EO, and HK provided the clinical samples and intellectual input. SI and HH assisted with the analysis of tumor stiffness. SM and YS assisted with histological analysis. HK, YH, MF, and MT directed the project and provided intellectual input. AE directed the project and wrote the paper.

Corresponding author

Correspondence to Atsushi Enomoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iida, T., Mizutani, Y., Esaki, N. et al. Pharmacologic conversion of cancer-associated fibroblasts from a protumor phenotype to an antitumor phenotype improves the sensitivity of pancreatic cancer to chemotherapeutics. Oncogene 41, 2764–2777 (2022). https://doi.org/10.1038/s41388-022-02288-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02288-9

This article is cited by

Search

Quick links