Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transferrin receptor 1 promotes the fibroblast growth factor receptor-mediated oncogenic potential of diffused-type gastric cancer

Abstract

Diffuse-type gastric cancer (DGC) is a highly invasive subtype of gastric adenocarcinoma that frequently exhibits scattered peritoneal metastasis. Previous studies have shown that the genes of receptor tyrosine kinases (RTKs), such as fibroblast growth factor receptor 2 (FGFR2) or Met, are amplified in some DGC cell lines, leading to the constitutive activation of corresponding RTKs. In these cell lines, the survival of cancer cells appears to be dependent on the activation of RTKs. To gain novel insights into the downstream signaling pathways of RTKs specific to DGC, phosphotyrosine-containing proteins associated with activated FGFR2 were purified through two sequential rounds of immunoprecipitation from the lysates of two DGC cell lines. As a result, transferrin receptor 1 (TfR1) was identified as the binding partner of FGFR2. Biochemical analysis confirmed that TfR1 protein binds to FGFR2 and is phosphorylated at tyrosine 20 (Tyr20) in an FGFR2 kinase activity-dependent manner. The knockdown of TfR1 and treatment with an inhibitor of FGFR2 caused significant impairment in iron uptake and suppression of cellular proliferation in vitro. Moreover, the suppression of expression levels of TfR1 in the DGC cells significantly reduced their tumorigenicity and potency of peritoneal dissemination. It was indicated that TfR1, when phosphorylated by the binding partner FGFR2 in DGC cells, promotes proliferation and tumorigenicity of these cancer cells. These results suggest that the control of TfR1 function may serve as a therapeutic target in DGC with activated FGFR2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of FGFR2-binding phospho-target proteins in DGC cell lines.
Fig. 2: Tyrosine phosphorylation of TfR1 and its association with FGFR2.
Fig. 3: Requirement of FGFR2-mediated Tyr20 phosphorylation of TfR1 for transferrin internalization.
Fig. 4: Iron uptake and cell proliferation by phospho-TfR1 specific for FGFR-type DGC cell lines.
Fig. 5: Effect of TfR1 knockdown on tumor growth and peritoneal metastasis in the mouse model of intraperitoneal transplant.
Fig. 6: The regulation of cell proliferation and survival mediated by TfR1 in FGFR-type DGC cells.

Similar content being viewed by others

References

  1. Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9:217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hattori Y, Odagiri H, Nakatani H, Miyagawa K, Naito K, Sakamoto H, et al. K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes. Proc Natl Acad Sci USA. 1990;87:5983–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuniyasu H, Yasui W, Kitadai Y, Yokozaki H, Ito H, Tahara E. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun. 1992;189:227–32.

    Article  CAS  PubMed  Google Scholar 

  4. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

    Article  CAS  PubMed  Google Scholar 

  5. Shirakihara T, Horiguchi K, Miyazawa K, Ehata S, Shibata T, Morita I, et al. TGF-beta regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J. 2011;30:783–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dieci MV, Arnedos M, Andre F, Soria JC. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov. 2013;3:264–79.

    Article  CAS  PubMed  Google Scholar 

  7. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res. 2016;22:259–67.

    Article  CAS  PubMed  Google Scholar 

  8. Hattori Y, Itoh H, Uchino S, Hosokawa K, Ochiai A, Ino Y, et al. Immunohistochemical detection of K-sam protein in stomach cancer. Clin Cancer Res. 1996;2:1373–81.

    CAS  PubMed  Google Scholar 

  9. Kunii K, Davis L, Gorenstein J, Hatch H, Yashiro M, Di Bacco A, et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 2008;68:2340–8.

    Article  CAS  PubMed  Google Scholar 

  10. Nakatani H, Sakamoto H, Yoshida T, Yokota J, Tahara E, Sugimura T, et al. Isolation of an amplified DNA sequence in stomach cancer. Jpn J Cancer Res. 1990;81:707–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamaguchi H, Takanashi M, Yoshida N, Ito Y, Kamata R, Fukami K, et al. Saracatinib impairs the peritoneal dissemination of diffuse-type gastric carcinoma cells resistant to Met and fibroblast growth factor receptor inhibitors. Cancer Sci. 2014;105:528–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neckers LM, Trepel JB. Transferrin receptor expression and the control of cell growth. Cancer Invest. 1986;4:461–70.

    Article  CAS  PubMed  Google Scholar 

  13. Kawabata H, Nakamaki T, Ikonomi P, Smith RD, Germain RS, Koeffler HP. Expression of transferrin receptor 2 in normal and neoplastic hematopoietic cells. Blood. 2001;98:2714–9.

    Article  CAS  PubMed  Google Scholar 

  14. Aisen P. Transferrin receptor 1. Int J Biochem Cell Biol. 2004;36:2137–43.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. Structure of the human transferrin receptor-transferrin complex. Cell. 2004;116:565–76.

    Article  CAS  PubMed  Google Scholar 

  16. Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC. Crystal structure of the ectodomain of human transferrin receptor. Science. 1999;286:779–82.

    Article  CAS  PubMed  Google Scholar 

  17. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13:342–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol. 2006;121:144–58.

    Article  CAS  PubMed  Google Scholar 

  19. Collawn JF, Stangel M, Kuhn LA, Esekogwu V, Jing SQ, Trowbridge IS, et al. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell. 1990;63:1061–72.

    Article  CAS  PubMed  Google Scholar 

  20. Faulk WP, Hsi BL, Stevens PJ. Transferrin and transferrin receptors in carcinoma of the breast. Lancet. 1980;2:390–2.

    Article  CAS  PubMed  Google Scholar 

  21. Galbraith GM, Galbraith RM, Faulk WP. Transferrin binding by human lymphoblastoid cell lines and other transformed cells. Cell Immunol. 1980;49:215–22.

    Article  CAS  PubMed  Google Scholar 

  22. Gatter KC, Brown G, Trowbridge IS, Woolston RE, Mason DY. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol. 1983;36:539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu YJ, Shen D, Yin X, Gavine P, Zhang T, Su X, et al. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma. Br J Cancer. 2014;110:1169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakamura K, Yashiro M, Matsuoka T, Tendo M, Shimizu T, Miwa A, et al. A novel molecular targeting compound as K-samII/FGF-R2 phosphorylation inhibitor, Ki23057, for scirrhous gastric cancer. Gastroenterology. 2006;131:1530–41.

    Article  CAS  PubMed  Google Scholar 

  25. Jing SQ, Spencer T, Miller K, Hopkins C, Trowbridge IS. Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization. J Cell Biol. 1990;110:283–94.

    Article  CAS  PubMed  Google Scholar 

  26. Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L, Attili D, et al. Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 2016;24:447–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuang Y, Guo W, Ling J, Xu D, Liao Y, Zhao H, et al. Iron-dependent CDK1 activity promotes lung carcinogenesis via activation of the GP130/STAT3 signaling pathway. Cell Death Dis. 2019;10:297.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yashiro M, Chung YS, Nishimura S, Inoue T, Sowa M. Peritoneal metastatic model for human scirrhous gastric carcinoma in nude mice. Clin Exp Metastasis. 1996;14:43–54.

    Article  CAS  PubMed  Google Scholar 

  29. Collawn JF, Lai A, Domingo D, Fitch M, Hatton S, Trowbridge IS. YTRF is the conserved internalization signal of the transferrin receptor, and a second YTRF signal at position 31-34 enhances endocytosis. J Biol Chem. 1993;268:21686–92.

    Article  CAS  PubMed  Google Scholar 

  30. Jabara HH, Boyden SE, Chou J, Ramesh N, Massaad MJ, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74–78.

    Article  CAS  PubMed  Google Scholar 

  31. Kumar N, Wolf-Yadlin A, White FM, Lauffenburger DA. Modeling HER2 effects on cell behavior from mass spectrometry phosphotyrosine data. PLoS Comput Biol. 2007;3:e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jian J, Yang Q, Huang X. Src regulates Tyr(20) phosphorylation of transferrin receptor-1 and potentiates breast cancer cell survival. J Biol Chem. 2011;286:35708–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Böttcher RT, Pollet N, Delius H, Niehrs C. The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nat Cell Biol. 2004;6:38–44.

    Article  PubMed  CAS  Google Scholar 

  34. Tsang M, Friesel R, Kudoh T, Dawid IB. Identification of Sef, a novel modulator of FGF signalling. Nat Cell Biol. 2002;4:165–9.

    Article  CAS  PubMed  Google Scholar 

  35. Kovalenko D, Yang X, Nadeau RJ, Harkins LK, Friesel R. Sef inhibits fibroblast growth factor signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent ERK activation. J Biol Chem. 2003;278:14087–91.

    Article  CAS  PubMed  Google Scholar 

  36. Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł. Targeting cellular trafficking of fibroblast growth factor receptors as a strategy for selective cancer treatment. J Clin Med. 2018;8:7.

  37. Torti SV, Torti FM. Iron and cancer: 2020 Vision. Cancer Res. 2020;80:5435–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8:916–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Taetle R, Castagnola J, Mendelsohn J. Mechanisms of growth inhibition by anti-transferrin receptor monoclonal antibodies. Cancer Res. 1986;46:1759–63.

    CAS  PubMed  Google Scholar 

  40. Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820:291–317.

    Article  CAS  PubMed  Google Scholar 

  41. Yanagihara K, Takigahira M, Tanaka H, Komatsu T, Fukumoto H, Koizumi F, et al. Development and biological analysis of peritoneal metastasis mouse models for human scirrhous stomach cancer. Cancer Sci. 2005;96:323–32.

    Article  CAS  PubMed  Google Scholar 

  42. Qiu H, Yashiro M, Shinto O, Matsuzaki T, Hirakawa K. DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci. 2009;100:181–8.

    Article  CAS  PubMed  Google Scholar 

  43. Shirakihara T, Saitoh M, Miyazono K. Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol Biol Cell. 2007;18:3533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiederschain D, Wee S, Chen L, Loo A, Yang G, Huang A, et al. Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle. 2009;8:498–504.

    Article  CAS  PubMed  Google Scholar 

  45. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kazuyoshi Yanagihara (National Cancer Center, Japan) for providing 44As3 and 58As9 cell lines. This work was supported by JSPS KAKENHI Grants Numbers JP17K08648, JP18K07242, and JP21K07105.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: TS, RS. Data acquisition: TS, TK. Data analysis and interpretation: TS, HY, RS. Resources: MY. Paper preparation: TS, RS. Paper review & editing: HY, TK, MY.

Corresponding author

Correspondence to Ryuichi Sakai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirakihara, T., Yamaguchi, H., Kondo, T. et al. Transferrin receptor 1 promotes the fibroblast growth factor receptor-mediated oncogenic potential of diffused-type gastric cancer. Oncogene 41, 2587–2596 (2022). https://doi.org/10.1038/s41388-022-02270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02270-5

Search

Quick links