Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of the Notch1-c-myc-VCAM1 signalling axis initiates liver progenitor cell-driven hepatocarcinogenesis and pulmonary metastasis

Abstract

The cellular origin of hepatocellular carcinomas (HCC) and the role of Notch1 signalling in HCC initiation are controversial. Herein, we establish Notch1 as a regulator of HCC development and progression. Clinically, high Notch1 expression correlates with enhanced cancer progression, elevated lung metastasis, increased cancer stem cell (CSC)-like cells’ gene signature expression, and poor overall survival in HCC patients. Notch1 intracellular domain (N1ICD) overexpression spontaneously transforms rat liver progenitor cells (LPC) into CSC-like cells (WBN1ICD C5) under a selective growth environment, while orthotopic injection of these cells generates liver tumors and spontaneous pulmonary metastasis in an isogenic rat model. Mechanistically, the elevated Notch1 activity increases c-myc expression, which then transcriptionally upregulates VCAM1 expression to activate macrophage dependent HCC transendothelial migration. In vivo, silencing c-myc prohibits the tumorigenicity of WBN1ICD C5 cells, while depletion of VCAM1 reduces spontaneous lung metastasis without affecting primary WBN1ICD C5 orthotopic liver tumor growth. Importantly, depletion of macrophage or blockade of macrophage VCAM1 binding receptor α4β1-integrin reduces the number of WBN1ICD C5 lung nodules in an experimental metastasis model. Overall, our work discovers that the Notch1-c-myc-VCAM1 signaling axis initiates LPC-driven hepatocarcinogenesis and metastasis, providing a preclinical model for HCC study and therapeutic targets for an improved HCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High Notch1 expression stratifies HCC patients into those with enhanced tumor size, increased cancer progression, and poor overall survival.
Fig. 2: N1ICD overexpression spontaneously transforms rat oval progenitor cells into CSC-like cells under selective growth process.
Fig. 3: Depletion of c-myc inhibits the tumorigenicity of WBN1ICD C1/C5 cells both in vitro and in vivo.
Fig. 4: Activation of the Notch1 signaling stimulates the spontaneous pulmonary metastasis of WBN1ICD C5 cells in an orthotopic rat model.
Fig. 5: Depletion of VCAM1 in WBN1ICD C5 cells inhibits the pulmonary metastasis without affecting primary tumor formation and growth.
Fig. 6: Notch1 overexpression enhances c-myc expression to up-regulate VCAM1 expression transcriptionally.
Fig. 7: Depletion of VCAM1 or macrophage inhibits the metastatic ability of WBN1ICD C5 cells in vivo.
Fig. 8: Schematic representation of the role of Notch1-mediated signalling pathway in promoting c-myc driven cancer stemness and facilitating pulmonary metastasis via VCAM1 dependent macrophage activation.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the article and its supplementary information files and from the corresponding author upon reasonable request.

References

  1. Hooth MJ, Coleman WB, Presnell SC, Borchert KM, Grisham JW, Smith GJ. Spontaneous neoplastic transformation of WB-F344 rat liver epithelial cells. Am J Pathol. 1998;153:1913–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chan LH, Luk ST, Ma S. Turning hepatic cancer stem cells inside out-a deeper understanding through multiple perspectives. Mol Cells. 2015;38:202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sell S, Leffert HL. Liver cancer stem cells. J Clin Oncol. 2008;26:2800–5.

    Article  PubMed  Google Scholar 

  4. Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D, Umemura A, et al. Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer. Cell. 2015;162:766–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benhamouche S, Curto M, Saotome I, Gladden AB, Liu CH, Giovannini M, et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 2010;24:1718–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ntziachristos P, Lim JS, Sage J, Aifantis I. From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer cell. 2014;25:318–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 2013;498:497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J, et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol. 2000;20:1825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu W, Niu J, He M, Zhang L, Lv X, Liu F, et al. SNORD89 promotes stemness phenotype of ovarian cancer cells by regulating Notch1-c-Myc pathway. J Transl Med. 2019;17:259.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Verginelli F, Adesso L, Limon I, Alisi A, Gueguen M, Panera N, et al. Activation of an endothelial Notch1-Jagged1 circuit induces VCAM1 expression, an effect amplified by interleukin-1beta. Oncotarget. 2015;6:43216–29.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sun Q, Wang R, Wang Y, Luo J, Wang P, Cheng B. Notch1 is a potential therapeutic target for the treatment of human hepatitis B virus X protein-associated hepatocellular carcinoma. Oncol Rep. 2014;31:933–9.

    Article  CAS  PubMed  Google Scholar 

  12. Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, et al. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 2003;63:8323–9.

    CAS  PubMed  Google Scholar 

  13. Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J Exp Med. 2011;208:1963–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahn S, Hyeon J, Park CKNotch1. and Notch4 are markers for poor prognosis of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2013;12:286–94.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Li D, Feng F, An L, Hui F, Dang D, et al. Progressive and prognosis value of notch receptors and ligands in hepatocellular carcinoma: a systematic review and meta-analysis. Sci Rep. 2017;7:14809.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Strazzabosco M, Fabris L. Notch signaling in hepatocellular carcinoma: guilty in association! Gastroenterology. 2012;143:1430–4.

    Article  CAS  PubMed  Google Scholar 

  17. Kim MJ, Xia B, Suh HN, Lee SH, Jun S, Lien EM, et al. PAF-Myc-controlled cell stemness is required for intestinal regeneration and tumorigenesis. Dev Cell. 2018;44:582–96 e584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang HL, Wang P, Lu MZ, Zhang SD, Zheng L. c-Myc maintains the self-renewal and chemoresistance properties of colon cancer stem cells. Oncol Lett. 2019;17:4487–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wieland E, Rodriguez-Vita J, Liebler SS, Mogler C, Moll I, Herberich SE, et al. Endothelial notch1 activity facilitates metastasis. Cancer Cell. 2017;31:355–67.

    Article  CAS  PubMed  Google Scholar 

  20. Chen Q, Massague J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin Cancer Res. 2012;18:5520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell. 2011;20:701–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo Z, Mu L, Zheng Y, Shen W, Li J, Xu L, et al. NUMB enhances Notch signaling by repressing ubiquitination of NOTCH1 intracellular domain. J Mol Cell Biol. 2020;12:345–58.

    Article  CAS  PubMed  Google Scholar 

  23. Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26:2166–76.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Q, Zhang XH, Massague J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 2011;20:538–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mishra A, Guo Y, Zhang L, More S, Weng T, Chintagari NR, et al. A critical role for P2X7 receptor-induced VCAM-1 shedding and neutrophil infiltration during acute lung injury. J Immunol. 2016;197:2828–37.

    Article  CAS  PubMed  Google Scholar 

  26. Jin H, Su J, Garmy-Susini B, Kleeman J, Varner J. Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res. 2006;66:2146–52.

    Article  CAS  PubMed  Google Scholar 

  27. Lai YS, Wahyuningtyas R, Aui SP, Chang KT. Autocrine VEGF signalling on M2 macrophages regulates PD-L1 expression for immunomodulation of T cells. J Cell Mol Med. 2019;23:1257–67.

    CAS  PubMed  Google Scholar 

  28. Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian BZ, et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Disco. 2015;5:932–43.

    Article  CAS  Google Scholar 

  29. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185:642–52.

    Article  CAS  PubMed  Google Scholar 

  30. Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 2019;18:64.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, et al. Liver stem cells and hepatocellular carcinoma. Hepatology. 2009;49:318–29.

    Article  PubMed  Google Scholar 

  32. Lohuizen van M, Verbeek S, Scheijen B, Wientjens E, Gulden H, Berns A. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell. 1991;65:737–52.

    Article  Google Scholar 

  33. Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong Y, Toffanin S, et al. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology. 2012;143:1660–9.e1667.

    Article  CAS  PubMed  Google Scholar 

  34. Gurzu S, Kobori L, Fodor D, Jung I. Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: a review. BioMed Res Int. 2019;2019:2962580.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007;45:938–47.

    Article  CAS  PubMed  Google Scholar 

  36. Ding L, Ding YN, Lin Y, Wen JM, Xue L. Proteins related to early changes in carcinogenesis of hepatic oval cells after treatment with methylnitronitrosoguanidine. Exp Toxicol Pathol. 2014;66:139–46.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Li Y, Kang X, Guo K, Li H, Gao D, et al. Dynamic alteration of protein expression profiles during neoplastic transformation of rat hepatic oval-like cells. Cancer Sci. 2010;101:1099–107.

    Article  CAS  PubMed  Google Scholar 

  38. Wu K, Ding J, Chen C, Sun W, Ning BF, Wen W, et al. Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology. 2012;56:2255–67.

    Article  CAS  PubMed  Google Scholar 

  39. Lai GH, Zhang Z, Shen XN, Ward DJ, Dewitt JL, Holt SE, et al. erbB-2/neu transformed rat cholangiocytes recapitulate key cellular and molecular features of human bile duct cancer. Gastroenterology. 2005;129:2047–57.

    Article  CAS  PubMed  Google Scholar 

  40. Padilla-Nash HM, Hathcock K, McNeil NE, Mack D, Hoeppner D, Ravin R, et al. Spontaneous transformation of murine epithelial cells requires the early acquisition of specific chromosomal aneuploidies and genomic imbalances. Genes Chromosomes Cancer. 2012;51:353–74.

    Article  CAS  PubMed  Google Scholar 

  41. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2016;2:16018.

    Article  PubMed  Google Scholar 

  42. Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S, et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest. 2012;122:2911–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opin Pharm. 2013;13:595–601.

    Article  CAS  Google Scholar 

  44. Cardoso AP, Pinto ML, Pinto AT, Oliveira MI, Pinto MT, Goncalves R, et al. Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y(1086), c-Src, Erk1/2 and Akt phosphorylation and smallGTPase activity. Oncogene. 2014;33:2123–33.

    Article  CAS  PubMed  Google Scholar 

  45. Byrne GJ, Ghellal A, Iddon J, Blann AD, Venizelos V, Kumar S, et al. Serum soluble vascular cell adhesion molecule-1: role as a surrogate marker of angiogenesis. J Natl Cancer Inst. 2000;92:1329–36.

    Article  CAS  PubMed  Google Scholar 

  46. Nagy A, Lanczky A, Menyhart O, Gyorffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 2018;8:9227.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang R, Wu WR, Shi XD, Xu LB, Zhu MS, Zeng H, et al. Dysregulation of Bmi1 promotes malignant transformation of hepatic progenitor cells. Oncogenesis. 2016;5:e203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vandereyken M, Jacques S, Van Overmeire E, Amand M, Rocks N, Delierneux C, et al. Dusp3 deletion in mice promotes experimental lung tumour metastasis in a macrophage dependent manner. PLoS One. 2017;12:e0185786.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Some of the illustrations were created using Biorender.com. This work was supported by grants from the National Natural Science Foundation of China (81972255, 82173195, 81920108028, 81872142, 81772597, 82173229, 81702904, 81972262), Guangdong Natural Science Foundation (2021A1515010095, 712055485047), Guangzhou Science and Technology Program Key Project (201904020008), Sun Yat-sen University Clinical Research 5010 Program (2018008), Science and Technology Program of Guangzhou (202102010326), Sun Yat-sen University Fundamental Research Funds (19ykpy113), the Key Training Program for Young Scholars of Sun Yat-sen University (18ykzd07), grant from the Key Laboratory of Malignant Tumor Molecular Mechanism and Translational Medicine of Guangzhou Bureau of Science and Information Technology ([2013]163), the Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes (KLB09001), Guangdong Science and Technology Department (2020A0505100029, 2020B1212060018, 2020B1212030004), the Guangdong Translational Medicine Public Platform of Guangdong Province (4202037).

Author information

Authors and Affiliations

Authors

Contributions

WRW, XDS, and FPZ carried out the majority of the experiments and contributed equally to the paper; KZ, YFQ, SPH, HWF, LZ, and MSZ assisted the animal experiments; FPZ and HZ carried out the RNA-seq database and immunohistochemistry analysis; RZ and XHY provided technical advice. LBX, PPW, and CL conceived the study, co-supervised the research, and co-wrote the manuscript.

Corresponding authors

Correspondence to Lei-Bo Xu, Ping-Pui Wong or Chao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All animal procedures were approved by the animal care and use committee of Sun Yat-sen University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WR., Shi, XD., Zhang, FP. et al. Activation of the Notch1-c-myc-VCAM1 signalling axis initiates liver progenitor cell-driven hepatocarcinogenesis and pulmonary metastasis. Oncogene 41, 2340–2356 (2022). https://doi.org/10.1038/s41388-022-02246-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02246-5

This article is cited by

Search

Quick links