Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOX17 and PAX8 constitute an actionable lineage-survival transcriptional complex in ovarian cancer

Abstract

Müllerian tissue-specific oncogenes, prototyped by PAX8, underlie ovarian tumorigenesis and represent unique molecular vulnerabilities. Further delineating such lineage-dependency factors and associated therapeutic implications would provide valuable insights into ovarian cancer biology and treatment. In this study, we identified SOX17 as a new lineage-survival master transcription factor, which shared co-expression pattern with PAX8 in epithelial ovarian carcinoma. Genetic disruption of SOX17 or PAX8 analogously inhibited neoplastic cell viability and downregulated a spectrum of lineage-related transcripts. Mechanistically, we showed that SOX17 physically interacted with PAX8 in cultured cell lines and clinical tumor specimens. The two nuclear proteins bound to overlapping genomic regions and regulated a common set of downstream genes, including those involved in cell cycle and tissue morphogenesis. In addition, we revealed that small-molecule inhibitors of transcriptional cyclin-dependent kinases (CDKs) effectively reduced SOX17 and PAX8 expression. ZSQ1722, a novel orally bioavailable CDK12/13 covalent antagonist, exerted potent anti-tumor activity in xenograft models. These findings shed light on an actionable lineage-survival transcriptional complex in ovarian cancer, and facilitated drug discovery by generating a serial of candidate compounds to pharmacologically target this difficult-to-treat malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SOX17 and PAX8 display Müllerian lineage-specific co-expression.
Fig. 2: SOX17 and PAX8 are indispensable to a subset of ovarian cancer.
Fig. 3: SOX17 and PAX8 form a nuclear protein complex.
Fig. 4: Integrated analyses identify common target genes of SOX17 and PAX8.
Fig. 5: Transcriptional CDK inhibitors ablate SOX17 and PAX8 expression.
Fig. 6: Novel covalent CDK12/13 inhibitors downregulate SOX17 and PAX8.
Fig. 7: Orally bioavailable ZSQ1722 elicits potent anticancer effects in vivo.

Similar content being viewed by others

References

  1. Mills K, Fuh K. Recent Advances in Understanding, Diagnosing, and Treating Ovarian Cancer. F1000Res. 2017;6:84.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393:1240–53.

    Article  PubMed  Google Scholar 

  3. Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer. BMJ. 2020;371:m3773.

    Article  PubMed  Google Scholar 

  4. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Prim. 2016;2:16061.

    Article  PubMed  Google Scholar 

  5. Elias KM, Emori MM, Westerling T, Long H, Budina-Kolomets A, Li F, et al. Epigenetic remodeling regulates transcriptional changes between ovarian cancer and benign precursors. JCI Insight. 2016;1:e87988.

  6. Chaves-Moreira D, Morin PJ, Drapkin R. Unraveling the Mysteries of PAX8 in Reproductive Tract Cancers. Cancer Res. 2021;81:806–10.

    Article  CAS  PubMed  Google Scholar 

  7. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spitz F, Furlong EE. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012;13:613–26.

    Article  CAS  PubMed  Google Scholar 

  9. Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, Scott JA, et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci USA. 2011;108:12372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghannam-Shahbari D, Jacob E, Kakun RR, Wasserman T, Korsensky L, Sternfeld O, et al. PAX8 activates a p53-p21-dependent pro-proliferative effect in high grade serous ovarian carcinoma. Oncogene. 2018;37:2213–24.

    Article  CAS  PubMed  Google Scholar 

  11. Shi K, Yin X, Cai MC, Yan Y, Jia C, Ma P, et al. PAX8 regulon in human ovarian cancer links lineage dependency with epigenetic vulnerability to HDAC inhibitors. Elife. 2019;8:e44306.

  12. Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell. 2013;24:777–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brien GL, Valerio DG, Armstrong SA. Exploiting the Epigenome to Control Cancer-Promoting Gene-Expression Programs. Cancer Cell. 2016;29:464–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bradner JE, Hnisz D, Young RA. Transcriptional Addiction in Cancer. Cell. 2017;168:629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gryder BE, Wu L, Woldemichael GM, Pomella S, Quinn TR, Park PMC, et al. Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nat Commun. 2019;10:3004.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Augert A, MacPherson D. Treating transcriptional addiction in small cell lung cancer. Cancer Cell. 2014;26:783–4.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Peng H, Wang X, Yin X, Ma P, Jing Y, et al. Preclinical Efficacy and Molecular Mechanism of Targeting CDK7-Dependent Transcriptional Addiction in Ovarian Cancer. Mol Cancer Ther. 2017;16:1739–50.

    Article  CAS  PubMed  Google Scholar 

  18. Sharifnia T, Wawer MJ, Chen T, Huang QY, Weir BA, Sizemore A, et al. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med. 2019;25:292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parua PK, Fisher RP. Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nat Chem Biol. 2020;16:716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richters A, Doyle SK, Freeman DB, Lee C, Leifer BS, Jagannathan S, et al. Modulating Androgen Receptor-Driven Transcription in Prostate Cancer with Selective CDK9 Inhibitors. Cell Chem Biol. 2021;28:134–147.e114.

    Article  CAS  PubMed  Google Scholar 

  21. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12:15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Xu L, Lin RY, Müschen M, Koeffler HP. Core transcriptional regulatory circuitries in cancer. Oncogene. 2020;39:6633–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaret KS. Pioneer Transcription Factors Initiating Gene Network Changes. Annu Rev Genet. 2020;54:367–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019;10:1930.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kaya-Okur HS, Janssens DH, Henikoff JG, Ahmad K, Henikoff S. Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc. 2020;15:3264–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature. 2014;511:616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol. 2016;12:876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang HT, Dobrovolsky D, Paulk J, Yang G, Weisberg EL, Doctor ZM, et al. A Chemoproteomic Approach to Query the Degradable Kinome Using a Multi-kinase Degrader. Cell Chem Biol. 2018;25:88–99.e86.

    Article  CAS  PubMed  Google Scholar 

  29. Gryder BE, Pomella S, Sayers C, Wu XS, Song Y, Chiarella AM, et al. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat Genet. 2019;51:1714–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Durbin AD, Zimmerman MW, Dharia NV, Abraham BJ, Iniguez AB, Weichert-Leahey N, et al. Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nat Genet. 2018;50:1240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaves-Moreira D, Mitchell MA, Arruza C, Rawat P, Sidoli S, Nameki R et al. PAX8 orchestrates an angiogenic program through interaction with SOX17. bioRxiv 2020; https://doi.org/10.1101/2020.09.09.290387.

  32. Dinh HQ, Lin X, Abbasi F, Nameki R, Haro M, Olingy CE, et al. Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube. Cell Rep. 2021;35:108978.

    Article  CAS  PubMed  Google Scholar 

  33. Reddy J, Fonseca MAS, Corona RI, Nameki R, Segato Dezem F, Klein IA et al. Predicting master transcription factors from pan-cancer expression data. bioRxiv. 2019; https://doi.org/10.1101/839142

  34. Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development. 2013;140:4129–44.

    Article  CAS  PubMed  Google Scholar 

  35. Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development. 2014;141:737–51.

    Article  CAS  PubMed  Google Scholar 

  36. Ashrafizadeh M, Taeb S, Hushmandi K, Orouei S, Shahinozzaman M, Zabolian A, et al. Cancer and SOX proteins: new insight into their role in ovarian cancer progression/inhibition. Pharm Res. 2020;161:105159.

    Article  CAS  Google Scholar 

  37. Tan DS, Holzner M, Weng M, Srivastava Y, Jauch R. SOX17 in cellular reprogramming and cancer. Semin Cancer Biol. 2020;67:65–73.

    Article  CAS  PubMed  Google Scholar 

  38. Bleu M, Mermet-Meillon F, Apfel V, Barys L, Holzer L, Bachmann Salvy M, et al. PAX8 and MECOM are interaction partners driving ovarian cancer. Nat Commun. 2021;12:2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garraway LA, Sellers WR. Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer. 2006;6:593–602.

    Article  CAS  PubMed  Google Scholar 

  40. Wei W, Mok SC, Oliva E, Kim SH, Mohapatra G, Birrer MJ. FGF18 as a prognostic and therapeutic biomarker in ovarian cancer. J Clin Investig. 2013;123:4435–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, et al. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature. 2015;527:384–8.

    Article  CAS  PubMed  Google Scholar 

  42. Quereda V, Bayle S, Vena F, Frydman SM, Monastyrskyi A, Roush WR, et al. Therapeutic Targeting of CDK12/CDK13 in Triple-Negative Breast Cancer. Cancer Cell. 2019;36:545–558.e547.

    Article  CAS  PubMed  Google Scholar 

  43. Slabicki M, Kozicka Z, Petzold G, Li YD, Manojkumar M, Bunker RD, et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature. 2020;585:293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lv L, Chen P, Cao L, Li Y, Zeng Z, Cui Y, et al. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. Elife. 2020;9:e59994.

  45. Ding L, Bailey MH, Porta-Pardo E, Thorsson V, Colaprico A, Bertrand D, et al. Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell. 2018;173:305–320 e310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cai MC, Chen M, Ma P, Wu J, Lu H, Zhang S, et al. Clinicopathological, microenvironmental and genetic determinants of molecular subtypes in KEAP1/NRF2-mutant lung cancer. Int J Cancer. 2019;144:788–801.

    Article  CAS  PubMed  Google Scholar 

  48. Cai MC, Zhao X, Cao M, Ma P, Chen M, Wu J, et al. T-cell exhaustion interrelates with immune cytolytic activity to shape the inflamed tumor microenvironment. J Pathol. 2020;251:147–59.

    Article  CAS  PubMed  Google Scholar 

  49. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81972429 to RZ; 81922047 and 82172596 to GZ; 82173077 to XY; 82173111 to MZ), the Science and Technology Commission of Shanghai Municipality (18140902300 to RZ; 18JC1420500 to LT), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161313 to GZ), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02 to LT), Shanghai Natural Science Foundation (20ZR1433100 to XY), Shanghai Shenkang Hospital Development Center (SHDC2020CR3057B to XY), Shanghai Collaborative Innovation Center for Translational Medicine (TM202004 to XY), Beijing Kuanghua foundation for the development of Chinese and Western Medicine (BKF) (KH-2021-LLZX-018 to XY), Shanghai Jiao Tong University School of Medicine (YG2021GD02 and TMSK-2021-207 to XY), the grants from Shanghai Key Laboratory of Gynecologic Oncology (FKZL-2018-02 to PM).

Author information

Authors and Affiliations

Authors

Contributions

RZ, GZ, and LT conceptualized the study. LL, KS, and SZ carried out most of the experiments and analyzed data. CZ, YS, LC, KY, PS, MZ, YC, and CQ participated in experiment conduction. MCC and JZ performed the bioinformatics analyses. PM, YL, XY, and YZ provided technical or material support. GZ and LL drafted the paper. All the authors edited and approved the paper.

Corresponding authors

Correspondence to Li Tan, Guanglei Zhuang or Rongyu Zang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Shi, K., Zhou, S. et al. SOX17 and PAX8 constitute an actionable lineage-survival transcriptional complex in ovarian cancer. Oncogene 41, 1767–1779 (2022). https://doi.org/10.1038/s41388-022-02210-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02210-3

This article is cited by

Search

Quick links