Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of fibrosarcoma-induced CD11b+ myeloid cells and tumor necrosis factor-α in B cell responses

Abstract

The role of B cells in the anti-tumor immune response remains controversial. An increase in the number of B cells in the peripheral blood of some tumor patients has been associated with poor immunotherapy efficacy. However, the mechanism leading to the generation of these cells is not well-described. Using a fibrosarcoma model, we show that intraperitoneal administration of a xenogeneic antigen in tumor-bearing mice evokes large increases in antigen-specific serum immunoglobulin formation compared to tumor-naïve mice. An inability of tumor-bearing mice to induce enhanced antibody production after myeloid cell depletion suggests the antibody responses are CD11b+ myeloid cell-dependent. In vitro, CD11b+ myeloid cells promoted B cell proliferation, activation, and survival. High levels of tumor necrosis factor (TNF)-α were produced by CD11b+ cells, and TNF-α blockade inhibited B cell responses. CD11b+ cells appear to be important promoters of B cell responses and targeting B cells may increase the efficacy of immunotherapy in tumor-bearing hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patients with solid tumors who respond poorly to PD-1-based treatment have high levels of CD11b+CD33+HLA-DR cells.
Fig. 2: Peripheral B cells were related to the efficacy of immunotherapy.
Fig. 3: CD11b+ cells promote naïve B cell activation, proliferation, and survival.
Fig. 4: TNF-α is involved in the interaction of CD11b+ cells and B cells.
Fig. 5: Increased humoral immune responses in tumor-bearing mice.
Fig. 6: CD11b+ cells play important roles in enhanced antibody formation in tumor-bearing mice.

Similar content being viewed by others

References

  1. Fridman W, Petitprez F, Meylan M, Chen T, Sun C, Roumenina L, et al. B cells and cancer: To B or not to B? J Exp Med. 2021;218:e20200851.

    Article  CAS  PubMed  Google Scholar 

  2. Gu Y, Liu Y, Fu L, Zhai L, Zhu J, Han Y, et al. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG. Nat Med. 2019;25:312–322.

    Article  CAS  PubMed  Google Scholar 

  3. Somasundaram R, Zhang G, Fukunaga-Kalabis M, Perego M, Krepler C, Xu X, et al. Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat Commun. 2017;8:607.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang SS, Liu W, Ly D, Xu H, Qu L, Zhang L. Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer. Cell Mol Immunol. 2019;16:6–18.

    Article  CAS  PubMed  Google Scholar 

  5. Lechner A, Schlosser HA, Thelen M, Wennhold K, Rothschild SI, Gilles R, et al. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma. Oncoimmunology. 2019;8:1535293.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tang A, Dadaglio G, Oberkampf M, Carlo S, Peduto L, Laubreton D, et al. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer. Int J Cancer. 2016;139:1358–71.

    Article  CAS  PubMed  Google Scholar 

  7. Tokunaga R, Naseem M, Lo J, Battaglin F, Soin S, Puccini A, et al. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev. 2019;73:10–9.

    Article  CAS  PubMed  Google Scholar 

  8. Yuan S, Liu Y, Till B, Song Y, Wang Z. Pretreatment peripheral B cells are associated with tumor response to Anti-PD-1-Based Immunotherapy. Front Immunol. 2020;11:563653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T. B cells inhibit induction of T cell-dependent tumor immunity. Nat Med. 1998;4:627–30.

    Article  CAS  PubMed  Google Scholar 

  10. Grover A, Sanseviero E, Timosenko E, Gabrilovich DI. Myeloid-derived suppressor cells: a propitious road to clinic. Cancer Disco. 2021;11:2693–706.

    Article  CAS  Google Scholar 

  11. Knier B, Hiltensperger M, Sie C, Aly L, Lepennetier G, Engleitner T, et al. Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nat Immunol. 2018;19:1341–1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rastad J, Green W. LP-BM5 retrovirus-expanded monocytic myeloid-derived suppressor cells alter B cell phenotype and function. Immunohorizons. 2018;2:87–106.

    Article  CAS  PubMed  Google Scholar 

  13. Jaufmann J, Lelis F, Teschner A, Fromm K, Rieber N, Hartl D, et al. Human monocytic myeloid-derived suppressor cells impair B-cell phenotype and function in vitro. Eur J Immunol. 2020;50:33–47.

    Article  CAS  PubMed  Google Scholar 

  14. Xu X, Meng Q, Erben U, Wang P, Glauben R, Kuhl AA, et al. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol. 2017;14:597–606.

    Article  CAS  PubMed  Google Scholar 

  15. Lamichhane P, Karyampudi L, Shreeder B, Krempski K, Bahr D, Daum J, et al. IL10 Release upon PD-1 blockade sustains immunosuppression in ovarian cancer. Cancer Res. 2017;77:6667–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Minguet S, Dopfer E, Pollmer C, Freudenberg M, Galanos C, Reth M, et al. Enhanced B-cell activation mediated by TLR4 and BCR crosstalk. Eur J Immunol. 2008;38:2475–87.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao X, Rong L, Zhao X, Li X, Liu X, Deng J, et al. TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest. 2012;122:4094–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S, et al. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res. 2016;4:869–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tobin RP, Jordan KR, Robinson WA, Davis D, Borges VF, Gonzalez R, et al. Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. Int Immunopharmacol. 2018;63:282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bauer R, Udonta F, Wroblewski M, Ben-Batalla I, Santos IM, Taverna F, et al. Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of antiangiogenic therapy. Cancer Res. 2018;78:3220–32.

    Article  CAS  PubMed  Google Scholar 

  21. Iwata M, Eshima Y, Kagechika H. Retinoic acids exert direct effects on T cells to suppress Th1 development and enhance Th2 development via retinoic acid receptors. Int Immunol. 2003;15:1017–25.

    Article  CAS  PubMed  Google Scholar 

  22. Dawson HD, Collins G, Pyle R, Key M, Weeraratna A, Deep-Dixit V, et al. Direct and indirect effects of retinoic acid on human Th2 cytokine and chemokine expression by human T lymphocytes. BMC Immunol. 2006;7:27.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Morikawa K, Nonaka M. All-trans-retinoic acid accelerates the differentiation of human B lymphocytes maturing into plasma cells. Int Immunopharmacol. 2005;5:1830–8.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005;11:6713–21.

    Article  CAS  PubMed  Google Scholar 

  25. Montes C, Acosta-Rodríguez E, Mucci J, Zuniga E, Campetella O, Gruppi A. A Trypanosoma cruzi antigen signals CD11b+ cells to secrete cytokines that promote polyclonal B cell proliferation and differentiation into antibody-secreting cells. Eur J Immunol. 2006;36:1474–85.

    Article  CAS  PubMed  Google Scholar 

  26. Vasilevsky S, Colino J, Puliaev R, Canaday DH, Snapper CM. Macrophages pulsed with Streptococcus pneumoniae elicit a T cell-dependent antibody response upon transfer into naive mice. J Immunol. 2008;181:1787–1797.

    Article  CAS  PubMed  Google Scholar 

  27. Medoff BD, Seung E, Hong S, Thomas SY, Sandall BP, Duffield JS, et al. CD11b+ myeloid cells are the key mediators of Th2 cell homing into the airway in allergic inflammation. J Immunol. 2009;182:623–35.

    Article  CAS  PubMed  Google Scholar 

  28. Kool M, Petrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol. 2008;181:3755–9.

    Article  CAS  PubMed  Google Scholar 

  29. Jordan MB, Mills DM, Kappler J, Marrack P, Cambier JC. Promotion of B cell immune responses via an alum-induced myeloid cell population. Science. 2004;304:1808–10.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Jiang J, Li Z, Zhang J, Wang H, Qin Z. A myeloid cell population induced by Freund adjuvant suppresses T-cell-mediated antitumor immunity. J Immunother. 2010;33:167–77.

    Article  PubMed  Google Scholar 

  31. Shen M, Wang J, Yu W, Zhang C, Liu M, Wang K, et al. A novel MDSC-induced PD-1 - PD-L1 + B-cell subset in breast tumor microenvironment possesses immuno-suppressive properties. Oncoimmunology. 2018;7:e1413520.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee-Chang C, Rashidi A, Miska J, Zhang P, Pituch K, Hou D, et al. Myeloid-derived suppressive cells promote B cell-mediated immunosuppression via transfer of PD-L1 in Glioblastoma. Cancer Immunol Res. 2019;7:1928–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bodogai M, Moritoh K, Lee-Chang C, Hollander C, Sherman-Baust C, Wersto R, et al. Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res. 2015;75:3456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang C, Chang S, Hashimoto A, Chen Y, Kang C, Mato A, et al. Secretory IgM exacerbates tumor progression by inducing accumulations of MDSCs in Mice. Cancer Immunol Res. 2018;6:696–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu W, Sun H, Chen J, Yang H, Yu X, Chen H, et al. Immunosuppressive immature myeloid cell generation is controlled by glutamine metabolism in human cancer. Cancer Immunol Res. 2019;7:1605–18.

    Article  CAS  PubMed  Google Scholar 

  36. Holmgaard R, Brachfeld A, Gasmi B, Jones D, Mattar M, Doman T, et al. Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy. Oncoimmunology. 2016;5:e1151595.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ma Y, XiangD, Sun J, Ding C, Liu M, Hu X, et al. Targeting of antigens to B lymphocytes via CD19 as a means for tumor vaccine development. J Immunol. 2013;190:5588–99.

    Article  CAS  PubMed  Google Scholar 

  38. Lv Z, Zhang P, Li D, Qin M, Nie L, Wang X, et al. CD19-targeting fusion protein combined with PD1 antibody enhances anti-tumor immunity in mouse models. Oncoimmunology. 2020;9:1747688.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Liu Y, Zhang Y, Shang Y, Gao Q. MDSC-decreasing chemotherapy increases the efficacy of cytokine-induced killer cell immunotherapy in metastatic renal cell carcinoma and pancreatic cancer. Oncotarget. 2016;7:4760–9.

    Article  PubMed  Google Scholar 

  40. Yuan S, Hu X, Zhao Y, Wang Z. Case Report: PD-1 inhibitor is active in lung adenocarcinoma with B cell deficiency. Front Immunol. 2020;11:563622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Petitprez F, Reyniès A, Keung E, Chen T, Sun C, Calderaro J, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577:556–60.

    Article  CAS  PubMed  Google Scholar 

  42. Spiotto MT, Reth MA, Schreiber H. Genetic changes occurring in established tumors rapidly stimulate new antibody responses. Proc Natl Acad Sci USA. 2003;100:5425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burdin N, Kooten C, Galibert L, Abrams J, Wijdenes J, Banchereau J, et al. Endogenous IL-6 and IL-10 contribute to the differentiation of CD40-activated human B lymphocytes. J Immunol. 1995;154:2533–44.

    CAS  PubMed  Google Scholar 

  44. Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361:eaao4227.

  45. Cook MB, Barnett MJ, Bock CH, Cross AJ, Goodman PJ, Goodman GE, et al. Prediagnostic circulating markers of inflammation and risk of oesophageal adenocarcinoma: a study within the National Cancer Institute Cohort Consortium. Gut. 2019;68:960–8.

    Article  CAS  PubMed  Google Scholar 

  46. Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2018;15:671–82.

    Article  CAS  PubMed  Google Scholar 

  47. Montinaro A, Walczak H. Sterile inflammation fuels gastric cancer. Immunity. 2018;48:481–3.

    Article  CAS  PubMed  Google Scholar 

  48. Schmid T, Falter L, Weber S, Muller N, Molitor K, Zeller D, et al. Chronic inflammation increases the sensitivity of mouse Treg for TNFR2 Costimulation. Front Immunol. 2017;8:1471.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Forster M, Farrington K, Petrov JC, Belle JI, Mindt BC, Witalis M, et al. MYSM1-dependent checkpoints in B cell lineage differentiation and B cell-mediated immune response. J Leukoc Biol. 2017;101:643–54.

    Article  PubMed  Google Scholar 

  50. Hutchins AP, Takahashi Y, Miranda-Saavedra D. Genomic analysis of LPS-stimulated myeloid cells identifies a common pro-inflammatory response but divergent IL-10 anti-inflammatory responses. Sci Rep. 2015;5:9100.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Waffarn EE, Hastey CJ, Dixit N, Soo Choi Y, Cherry S, Kalinke U, et al. Infection-induced type I interferons activate CD11b on B-1 cells for subsequent lymph node accumulation. Nat Commun. 2015;6:8991.

    Article  CAS  PubMed  Google Scholar 

  52. Ahn G, Tseng D, Liao C, Dorie M, Czechowicz A, Brown J. Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci USA. 2010;107:8363–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Palma M, Venneri M, Galli R, Sergi L, Politi L, Sampaolesi M, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005;8:211–26.

    Article  PubMed  Google Scholar 

  54. DeNardo D, Barreto J, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16:91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81972690 and 81000914) and Medical Science and Technology Research Project of Health Commission of Henan Province (2018010033). The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ZW designed and performed experiments, analyzed data, and wrote the manuscript. YL, LP, BT, SY, XY, QF analyzed data and edited the manuscript. LC performed experiments. YL is responsible for bioinformatics analysis. ZQ supervised the study.

Corresponding author

Correspondence to Zibing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, Y., Peng, L. et al. Role of fibrosarcoma-induced CD11b+ myeloid cells and tumor necrosis factor-α in B cell responses. Oncogene 41, 1434–1444 (2022). https://doi.org/10.1038/s41388-022-02187-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02187-z

Search

Quick links