Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SOX2 mediates metabolic reprogramming of prostate cancer cells

A Correction to this article was published on 10 February 2022

This article has been updated

Abstract

New strategies are needed to predict and overcome metastatic progression and therapy resistance in prostate cancer. One potential clinical target is the stem cell transcription factor SOX2, which has a critical role in prostate development and cancer. We thus investigated the impact of SOX2 expression on patient outcomes and its function within prostate cancer cells. Analyses of SOX2 expression among a case-control cohort of 1028 annotated tumor specimens demonstrated that SOX2 expression confers a more rapid time to metastasis and decreased patient survival after biochemical recurrence. SOX2 ChIP-Seq analyses revealed SOX2-binding sites within prostate cancer cells which differ significantly from canonical embryonic SOX2 gene targets, and prostate-specific SOX2 gene targets are associated with multiple oncogenic pathways. Interestingly, phenotypic and gene expression analyses after CRISPR-mediated deletion of SOX2 in castration-resistant prostate cancer cells, as well as ectopic SOX2 expression in androgen-sensitive prostate cancer cells, demonstrated that SOX2 promotes changes in multiple metabolic pathways and metabolites. SOX2 expression in prostate cancer cell lines confers increased glycolysis and glycolytic capacity, as well as increased basal and maximal oxidative respiration and increased spare respiratory capacity. Further, SOX2 expression was associated with increased quantities of mitochondria, and metabolomic analyses revealed SOX2-associated changes in the metabolism of purines, pyrimidines, amino acids and sugars, and the pentose phosphate pathway. Analyses of SOX2 gene targets with central functions metabolism (CERK, ECHS1, HS6SDT1, LPCAT4, PFKP, SLC16A3, SLC46A1, and TST) document significant expression correlation with SOX2 among RNA-Seq datasets derived from patient tumors and metastases. These data support a key role for SOX2 in metabolic reprogramming of prostate cancer cells and reveal new mechanisms to understand how SOX2 enables metastatic progression, lineage plasticity, and therapy resistance. Further, our data suggest clinical opportunities to exploit SOX2 as a biomarker for staging and imaging, as well as a potential pharmacologic target.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SOX2 expression in primary prostate tumors is associated with rapid time to metastasis and prostate cancer-specific mortality.
Fig. 2: SOX2 ChIP-seq in castration-resistant prostate cancer (CRPC) cells reveals multiple nonstem cell gene targets.
Fig. 3: SOX2 deletion in castration-resistant prostate cancer (CRPC) cells decreases cell growth and invasion.
Fig. 4: SOX2 is associated with changes in cellular metabolism in prostate cancer cells, tumors, and metastases.
Fig. 5: SOX2 expression promotes increased glycolysis, oxidative phosphorylation, and mitochondrial quantity.

Change history

References

  1. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355:78–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kregel S, Kiriluk KJ, Rosen AM, Cai Y, Reyes EE, Otto KB, et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PloS one. 2013;8:e53701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells. 2014;6:305.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wegner M. All purpose Sox: The many roles of Sox proteins in gene expression. Int J Biochem Cell Biol. 2010;42:381–90.

    Article  CAS  PubMed  Google Scholar 

  6. Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Oxford University Press, 2012.

  7. Ji J, Zheng P-S. Expression of Sox2 in human cervical carcinogenesis. Hum Pathol. 2010;41:1438–47.

    Article  CAS  PubMed  Google Scholar 

  8. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol. 2011;3:230–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hütz K, Mejías-Luque R, Farsakova K, Ogris M, Krebs S, Anton M, et al. The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells. Carcinogenesis. 2013;35:942–50.

    Article  PubMed  Google Scholar 

  10. Chen S, Li X, Lu D, Xu Y, Mou W, Wang L, et al. SOX2 regulates apoptosis through MAP4K4-survivin signaling pathway in human lung cancer cells. Carcinogenesis. 2013;35:613–23.

    Article  CAS  PubMed  Google Scholar 

  11. Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N, et al. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PloS ONE. 2011;6:e26740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han X, Fang X, Lou X, Hua D, Ding W, Foltz G, et al. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PloS ONE. 2012;7:e41335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun C, Sun L, Li Y, Kang X, Zhang S, Liu Y. Sox2 expression predicts poor survival of hepatocellular carcinoma patients and it promotes liver cancer cell invasion by activating Slug. Med Oncol. 2013;30:503.

    Article  PubMed  Google Scholar 

  14. Lou X, Han X, Jin C, Tian W, Yu W, Ding D, et al. SOX2 targets fibronectin 1 to promote cell migration and invasion in ovarian cancer: new molecular leads for therapeutic intervention. Omics: A J Integr Biol. 2013;17:510–8.

    Article  CAS  Google Scholar 

  15. Bareiss PM, Paczulla A, Wang H, Schairer R, Wiehr S, Kohlhofer U, et al. SOX2 expression associates with stem cell state in human ovarian carcinoma. Cancer Res. 2013;73:5544–55.

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, et al. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PloS ONE. 2012;7:e36326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herreros-Villanueva M, Zhang J, Koenig A, Abel E, Smyrk TC, Bamlet W, et al. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis. 2013;2:e61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vazquez-Martin A, Cufí S, Lopez-Bonet E, Corominas-Faja B, Cuyàs E, Vellon L, et al. Reprogramming of non-genomic estrogen signaling by the stemness factor SOX2 enhances the tumor-initiating capacity of breast cancer cells. Cell Cycle. 2013;12:3471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu X, Cates JM, Morrissey C, You C, Grabowska MM, Zhang J, et al. SOX2 expression in the developing, adult, as well as, diseased prostate. Prostate Cancer Prostatic Dis. 2014;17:301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ugolkov AV, Eisengart LJ, Luan C, Yang XJ. Expression analysis of putative stem cell markers in human benign and malignant prostate. Prostate. 2011;71:18–25.

    Article  PubMed  Google Scholar 

  21. Matsika A, Srinivasan B, Day C, Mader SA, Kiernan DM, Broomfield A, et al. Cancer stem cell markers in prostate cancer: an immunohistochemical study of ALDH1, SOX2 and EZH2. Pathology. 2015;47:622–8.

    Article  CAS  PubMed  Google Scholar 

  22. Russo MV, Esposito S, Tupone MG, Manzoli L, Airoldi I, Pompa P, et al. SOX2 boosts major tumor progression genes in prostate cancer and is a functional biomarker of lymph node metastasis. Oncotarget. 2016;7:12372–85.

    Article  PubMed  Google Scholar 

  23. Hempel HA, Cuka NS, Kulac I, Barber JR, Cornish TC, Platz EA, et al. Low Intratumoral Mast Cells Are Associated With a Higher Risk of Prostate Cancer Recurrence. Prostate. 2017;77:412–24.

    Article  CAS  PubMed  Google Scholar 

  24. Toubaji A, Albadine R, Meeker AK, Isaacs WB, Lotan T, Haffner MC, et al. Increased gene copy number of ERG on chromosome 21 but not TMPRSS2-ERG fusion predicts outcome in prostatic adenocarcinomas. Mod Pathol. 2011;24:1511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McAuley E, Moline D, VanOpstall C, Lamperis S, Brown R, Vander Griend DJ. Sox2 Expression Marks Castration-Resistant Progenitor Cells in the Adult Murine Prostate. Stem Cells. 2019;37:690–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12:15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu P, Sanalkumar R, Bresnick EH, Keleş S, Dewey CN. Integrative analysis with ChIP-seq advances the limits of transcript quantification from RNA-seq. Genome Res. 2016;26:1124–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl J Med. 2014;371:1028–38.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015;163:1011–25.

    Article  Google Scholar 

  31. Bhanvadia RR, VanOpstall C, Brechka H, Barashi NS, Gillard M, McAuley EM, et al. MEIS1 and MEIS2 Expression and Prostate Cancer Progression: A Role For HOXB13 Binding Partners in Metastatic Disease. Clin Cancer Res. 2018;24:3668–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pflueger D, Terry S, Sboner A, Habegger L, Esgueva R, Lin PC, et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res. 2011;21:56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cutruzzolà F, Giardina G, Marani M, Macone A, Paiardini A, Rinaldo S, et al. Glucose metabolism in the progression of prostate cancer. Front Physiol. 2017;8:97.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Russo MV, Esposito S, Tupone MG, Manzoli L, Airoldi I, Pompa P, et al. SOX2 boosts major tumor progression genes in prostate cancer and is a functional biomarker of lymph node metastasis. Oncotarget. 2016;7:12372.

    Article  PubMed  Google Scholar 

  36. Lowrance WT, Breau RH, Chou R, Chapin BF, Crispino T, Dreicer R, et al. Advanced Prostate Cancer: AUA/ASTRO/SUO Guideline PART I. J Urol. 2021;205:14–21.

    Article  PubMed  Google Scholar 

  37. Van den Broeck T, van den Bergh RCN, Arfi N, Gross T, Moris L, Briers E, et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur Urol. 2019;75:967–87.

    Article  PubMed  Google Scholar 

  38. Metz EP, Wilder PJ, Dong J, Datta K, Rizzino A. Elevating SOX2 in prostate tumor cells upregulates expression of neuroendocrine genes, but does not reduce the inhibitory effects of enzalutamide. J Cell Physiol. 2020;235:3731–40.

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Wang L, Li Z, Geng X, Li M, Tang Q, et al. SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer. Lab Invest. 2020;100:570–82.

    Article  CAS  PubMed  Google Scholar 

  40. Kwon OJ, Zhang L, Jia D, Zhou Z, Li Z, Haffner M, et al. De novo induction of lineage plasticity from human prostate luminal epithelial cells by activated AKT1 and c-Myc. Oncogene. 2020;39:7142–51.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yoo YA, Vatapalli R, Lysy B, Mok H, Desouki MM, Abdulkadir SA. The Role of Castration-Resistant Bmi1 + Sox2+ Cells in Driving Recurrence in Prostate Cancer. J Natl Cancer Inst. 2019;111:311–21.

    Article  PubMed  Google Scholar 

  42. Kar S, Sengupta D, Deb M, Pradhan N, Patra SK. SOX2 function and Hedgehog signaling pathway are co-conspirators in promoting androgen independent prostate cancer. Biochim Biophys Acta Mol Basis Dis. 2017;1863:253–65.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z, Zhou C, Li X, Barnes SD, Deng S, Hoover E, et al. Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell. 2020;37:584–98 e511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Metz EP, Wuebben EL, Wilder PJ, Cox JL, Datta K, Coulter D, et al. Tumor quiescence: elevating SOX2 in diverse tumor cell types downregulates a broad spectrum of the cell cycle machinery and inhibits tumor growth. BMC Cancer. 2020;20:941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hussenet T, Dali S, Exinger J, Monga B, Jost B, Dembelé D, et al. SOX2 is an oncogene activated by recurrent 3q26. 3 amplifications in human lung squamous cell carcinomas. PloS ONE. 2010;5:e8960.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Annovazzi L, Mellai M, Caldera V, Valente G, Schiffer D. SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genomics-Proteom. 2011;8:139–47.

    CAS  Google Scholar 

  47. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41:1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maier S, Wilbertz T, Braun M, Scheble V, Reischl M, Mikut R, et al. SOX2 amplification is a common event in squamous cell carcinomas of different organ sites. Hum Pathol. 2011;42:1078–88.

    Article  CAS  PubMed  Google Scholar 

  49. Wuebben EL, Rizzino A. The dark side of SOX2: cancer - a comprehensive overview. Oncotarget. 2017;8:44917–43.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Varum S, Rodrigues AS, Moura MB, Momcilovic O. Easley CAt, Ramalho-Santos J et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One. 2011;6:e20914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. 2021;21:162–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elia I, Doglioni G, Fendt SM. Metabolic Hallmarks of Metastasis Formation. Trends Cell Biol. 2018;28:673–84.

    Article  CAS  PubMed  Google Scholar 

  53. Whitburn J, Edwards CM. Metabolism in the Tumour-Bone Microenvironment. Curr Osteoporos Rep. 2021;19:494–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zong WX, Rabinowitz JD, White E. Mitochondria and Cancer. Mol Cell. 2016;61:667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fraum TJ, Ludwig DR, Kim EH, Schroeder P, Hope TA, Ippolito JE. Prostate cancer PET tracers: essentials for the urologist. Can J Urol. 2018;25:9371–83.

    PubMed  Google Scholar 

  56. Jadvar H. Is There Use for FDG-PET in Prostate Cancer? Semin Nucl Med. 2016;46:502–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res. 2008;68:9703–11.

    Article  Google Scholar 

  58. Wang MH, Shugart YY, Cole SR, Platz EA. A simulation study of control sampling methods for nested case-control studies of genetic and molecular biomarkers and prostate cancer progression. Cancer Epidemiol Biomark Prev. 2009;18:706–11.

    Article  CAS  Google Scholar 

  59. Kregel S, Chen JL, Tom W, Krishnan V, Kach J, Brechka H, et al. Acquired resistance to the second-generation androgen receptor antagonist enzalutamide in castration-resistant prostate cancer. Oncotarget. 2016;7:26259–74.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Michiel Sedelaar JP, Dalrymple SS, Isaacs JT. Of mice and men-warning: intact versus castrated adult male mice as xenograft hosts are equivalent to hypogonadal versus abiraterone treated aging human males, respectively. Prostate. 2013;73:1316–25.

    Article  CAS  PubMed  Google Scholar 

  61. Dracopoli NC Current protocols in human genetics. Wiley: New York, NY, 1994, pp 2 volumes (loose-leaf).

  62. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138:245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2016;44:D110–15.

    Article  CAS  PubMed  Google Scholar 

  69. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28:2184–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Vander Griend and Szmulewitz lab members for their input; Dr. Brendan Looyenga at Calvin College for his gift of vectors used to generate knockout cell lines using CRISPR; support of the University of Illinois at Chicago Department of Pathology led by Dr. Fred Behm, as well as the University of Illinois at Chicago Research Histology and Tissue Imaging Core led by Dr. Peter Gann; Drs. Bruce Trock and Karen Sfanos of the Prostate Cancer Biorepository Network (PCBN) for help obtaining annotated tumor specimens and data; expert technical assistance of the Human Tissue Resource Center core facility led by Dr. Mark Lingen, and the assistance of Mary Jo Fekete; the Immunohistochemistry Core Facility run by Terri Li; the Northwestern University Metabolomics Core Facility for their assistance and service; the University of Chicago Genomics Facility led by Dr. Pieter Faber; support of the University of Chicago Committee on Cancer Biology, led by Dr. Kay Macleod and Stephen Kron; and support of Drs. Alan Diamond, Larisa Nonn, and Gail Prins at the University of Illinois at Chicago Departments of Pathology and Urology.

Funding

R01CA178431 (DJ Vander Griend), R00CA218885-04 (P.M.); University of Chicago Comprehensive Cancer Center Support Grant (P30CA014599); The Brinson Foundation; Alvin Baum Family Fund; The Pierce Foundation; and National Center for Advancing Translational Sciences (UL1TR002003). The Prostate Cancer Biorepository Network is funded by the Department of Defense Prostate Cancer Research Program Award No. W81XWH-14-2-0182, W81XWH-14-2-0183, W81XWH-14-2-0185, W81XWH-14-2-0186, and W81XWH-15-2-0062, and W81XWH-18-1-0411 (P.M.). L. de Wet was supported by the Goldblatt Foundation Fellowship; S. Kregel was supported by a Cancer Biology Training Grant (T32 CA 009594). P.M. is also supported by CPRIT (RR170050), Welch Foundation (I-2005-20190330) and Prostate Cancer Foundation (17YOUN12).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DJVG, LDW, SK, JC, RZS. Methodology: DJVG, LDW, MG, SK, SL. Formal Analysis: DJVG, LDW, AW, MG, SK, GP, HW. Investigations: DJVG, LDW, AW, MG, SK, SL, LG, JV, RB, KC. Resource: EP, AMD, PM. Data Curation: DJVG, LDW, AW, GP. Writing and Editing: DJVG, LDW. Supervision: DJVG.

Corresponding author

Correspondence to Donald J. Vander Griend.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Wet, L., Williams, A., Gillard, M. et al. SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene 41, 1190–1202 (2022). https://doi.org/10.1038/s41388-021-02157-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02157-x

This article is cited by

Search

Quick links