Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The m6A reading protein YTHDF3 potentiates tumorigenicity of cancer stem-like cells in ocular melanoma through facilitating CTNNB1 translation

Abstract

N6-methyladenosine (m6A) is the most universal internal RNA modification on messenger RNAs and regulates the fate and functions of m6A-modified transcripts through m6A-specific binding proteins. Nevertheless, the functional role and potential mechanism of the m6A reading proteins in ocular melanoma tumorigenicity, especially cancer stem-like cell (CSC) properties, remain to be elucidated. Herein, we demonstrated that the m6A reading protein YTHDF3 promotes the translation of the target transcript CTNNB1, contributing to ocular melanoma propagation and migration through m6A methylation. YTHDF3 is highly expressed in ocular melanoma stem-like cells and abundantly enriched in ocular melanoma tissues, which is related to poor clinical prognosis. Moreover, YTHDF3 is required for the maintenance of CSC properties and tumor initiation capacity in ocular melanoma both in vitro and in vivo. Ocular melanoma cells with targeted YTHDF3 knockdown exhibited inhibitory tumor proliferation and migration abilities. Transcriptome-wide mapping of m6A peaks and YTHDF3 binding peaks on mRNAs revealed a key target gene candidate, CTNNB1. Mechanistically, YTHDF3 enhances CTNNB1 translation through recognizing and binding the m6A peaks on CTNNB1 mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: m6A reading protein YTHDF3 is highly expressed in ocular melanoma CSCs and predicts poor survival in UVM patients.
Fig. 2: YTHDF3 is required for the tumorigenic capacity of cancer stem-like cells in ocular melanoma.
Fig. 3: YTHDF3 knockdown inhibits the proliferation and migration of ocular melanoma cells.
Fig. 4: Identification of potential downstream target genes of YTHDF3 by multiomics analysis.
Fig. 5: Expression of β-catenin is regulated by YTHDF3.
Fig. 6: CTNNB1 may serve as the key candidate gene of YTHDF3.
Fig. 7: YTHDF3 regulates CTNNB1 expression by facilitating the translation process in an m6A-dependent manner.

Similar content being viewed by others

Data availability

The raw sequencing data supporting the conclusions of this paper, including RNA-seq, miCLIP-seq, and iCLIP-seq data, have been deposited in the Genome Sequence Archive [65] in the BIG Data Center [66], Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, under accession number CRA002956 (http://bigd.big.ac.cn/gsa/s/n110138p) and are publicly accessible at http://bigd.big.ac.cn/gsa.

References

  1. Shi H, Zhang X, Weng YL, Lu Z, Liu Y, Lu Z, et al. m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature. 2018;563:249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28:616–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vu LP, Cheng Y, Kharas MG. The Biology of m(6)A RNA Methylation in Normal and Malignant Hematopoiesis. Cancer Discov. 2019;9:25–33.

    Article  CAS  PubMed  Google Scholar 

  4. Hsu PJ, Shi H, He C. Epitranscriptomic influences on development and disease. Genome Biol. 2017;18:197.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29:1343–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12:767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer KD. DART-seq: an antibody-free method for global m(6)A detection. Nat Methods. 2019;16:1275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jia R, Chai P, Wang S, Sun B, Xu Y, Yang Y, et al. m(6)A modification suppresses ocular melanoma through modulating HINT2 mRNA translation. Mol Cancer. 2019;18:161.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang S, Wei J, Cui YH, Park G, Shah P, Deng Y, et al. m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 2019;10:2782.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, et al. Targeting the RNA m(6)A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell. 2019;25:137–48. e136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, et al. METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m(6)A Modification. Cell Stem Cell. 2018;22:191–205. e199

    Article  CAS  Google Scholar 

  13. Li Z, Qian P, Shao W, Shi H, He XC, Gogol M, et al. Suppression of m(6)A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 2018;28:904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell. 2017;31:591–606. e596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang J, Manson DK, Marr BP, Carvajal RD. Treatment of uveal melanoma: where are we now? Therapeutic Adv Med Oncol. 2018;10:1758834018757175.

    Google Scholar 

  16. Missotten GS, Keijser S, De Keizer RJ, De, Wolff-Rouendaal D. Conjunctival melanoma in the Netherlands: a nationwide study. Investig Ophthalmol Vis Sci. 2005;46:75–82.

    Article  Google Scholar 

  17. Shields CL, Shields JA, Gunduz K, Cater J, Mercado GV, Gross N et al. Conjunctival melanoma: risk factors for recurrence, exenteration, metastasis, and death in 150 consecutive patients. Arch Ophthalmol. (Chicago, Ill: 1960) 2000;118:1497–507.

  18. Tuomaala S, Eskelin S, Tarkkanen A, Kivela T. Population-based assessment of clinical characteristics predicting outcome of conjunctival melanoma in whites. Investig Ophthalmol Vis Sci. 2002;43:3399–408.

    Google Scholar 

  19. Smit KN, Jager MJ, de Klein A, Kili E. Uveal melanoma: towards a molecular understanding. Prog Retin Eye Res. 2019;75:100800

    Article  PubMed  Google Scholar 

  20. Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell. 2014;25:831–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z, et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell. 2014;25:822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore AR, Ran L, Guan Y, Sher JJ, Hitchman TD, Zhang JQ, et al. GNA11 Q209L Mouse Model Reveals RasGRP3 as an Essential Signaling Node in Uveal Melanoma. Cell Rep. 2018;22:2455–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larsen AC. Conjunctival malignant melanoma in Denmark: epidemiology, treatment and prognosis with special emphasis on tumorigenesis and genetic profile. Acta Ophthalmol. 2016;1:1–27. 94 Thesis

    Article  Google Scholar 

  24. Li P, He J, Yang Z, Ge S, Zhang H, Zhong Q, et al. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy. 2019;16:1186–99.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shang Q, Li Y, Wang H, Ge S, Jia R. Altered expression profile of circular RNAs in conjunctival melanoma. Epigenomics. 2019;11:787–804.

    Article  CAS  PubMed  Google Scholar 

  26. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  CAS  PubMed  Google Scholar 

  27. Braun KM. Cutaneous cancer stem cells: beta-catenin strikes again. Cell Stem Cell. 2008;2:406–8.

    Article  CAS  PubMed  Google Scholar 

  28. Angeloni V, Tiberio P, Appierto V, Daidone MG. Implications of stemness-related signaling pathways in breast cancer response to therapy. Semin Cancer Biol. 2015;31:43–51.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy GF, Wilson BJ, Girouard SD, Frank NY, Frank MH. Stem cells and targeted approaches to melanoma cure. Mol Asp Med. 2014;39:33–49.

    Article  CAS  Google Scholar 

  30. de Waard NE, Kolovou PE, McGuire SP, Cao J, Frank NY, Frank MH, et al. Expression of Multidrug Resistance Transporter ABCB5 in a Murine Model of Human Conjunctival Melanoma. Ocul Oncol Pathol. 2015;1:182–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Liu S, Ye Q, Pan J. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene addiction and reduces liver metastasis in uveal melanoma. Mol Cancer. 2019;18:140.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lai CY, Schwartz BE, Hsu MY. CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res. 2012;72:5111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  CAS  PubMed  Google Scholar 

  34. Giraud J, Failla LM, Pascussi JM, Lagerqvist EL, Ollier J, Finetti P, et al. Autocrine Secretion of Progastrin Promotes the Survival and Self-Renewal of Colon Cancer Stem-like Cells. Cancer Res. 2016;76:3618–28.

    Article  CAS  PubMed  Google Scholar 

  35. Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27:444–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27:626–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523:231–5.

    Article  CAS  PubMed  Google Scholar 

  39. Rappa G, Mercapide J, Anzanello F, Le TT, Johlfs MG, Fiscus RR, et al. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells. Exp Cell Res. 2013;319:810–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Newell F, Kong Y, Wilmott JS, Johansson PA, Ferguson PM, Cui C, et al. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat Commun. 2019;10:3163.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jin B, Zhang P, Zou H, Ye H, Wang Y, Zhang J, et al. Verification of EZH2 as a druggable target in metastatic uveal melanoma. Mol Cancer. 2020;19:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mackiewicz J, Burzykowski T, Izycki D, Mackiewicz A. Re-induction using whole cell melanoma vaccine genetically modified to melanoma stem cells-like beyond recurrence extends long term survival of high risk resected patients - updated results. J Immunother Cancer. 2018;6:134.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhou J, Jin B, Jin Y, Liu Y, Pan J. The antihelminthic drug niclosamide effectively inhibits the malignant phenotypes of uveal melanoma in vitro and in vivo. Theranostics. 2017;7:1447–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kalirai H, Damato BE, Coupland SE. Uveal melanoma cell lines contain stem-like cells that self-renew, produce differentiated progeny, and survive chemotherapy. Investig Ophthalmol Vis Sci. 2011;52:8458–66.

    Article  CAS  Google Scholar 

  45. Shidal C, Singh NP, Nagarkatti P, Nagarkatti M. MicroRNA-92 Expression in CD133(+) Melanoma Stem Cells Regulates Immunosuppression in the Tumor Microenvironment via Integrin-Dependent Activation of TGFbeta. Cancer Res. 2019;79:3622–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Terai K, Bi D, Liu Z, Kimura K, Sanaat Z, Dolatkhah R, et al. A Novel Oncolytic Herpes Capable of Cell-Specific Transcriptional Targeting of CD133+/- Cancer Cells Induces Significant Tumor Regression. Stem Cells (Dayt, Ohio). 2018;36:1154–69.

    Article  CAS  Google Scholar 

  47. Liu L, Liu X, Dong Z, Li J, Yu Y, Chen X, et al. N6-methyladenosine-related Genomic Targets are Altered in Breast Cancer Tissue and Associated with Poor Survival. J Cancer. 2019;10:5447–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 2019;18:143.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, Wang X, Zhang X, Wang J, Ma Y, Zhang L, et al. RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. Proc Natl Acad Sci USA. 2019;116:976–81.

    Article  CAS  PubMed  Google Scholar 

  50. Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, et al. YTHDF3 Induces the Translation of m(6)A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell. 2020;38:857–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gao Y, Pei G, Li D, Li R, Shao Y, Zhang QC, et al. Multivalent m(6)A motifs promote phase separation of YTHDF proteins. Cell Res. 2019;29:767–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 2017;51:1357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 2015;16:413–25.

    Article  CAS  PubMed  Google Scholar 

  54. Sun Q, Lee W, Mohri Y, Takeo M, Lim CH, Xu X, et al. A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease. Nat Commun. 2019;10:5023.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu L, Wang J, Sun G, Wu Q, Ma J, Zhang X, et al. m(6)A mRNA methylation regulates CTNNB1 to promote the proliferation of hepatoblastoma. Mol Cancer. 2019;18:188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Han B, Yan S, Wei S, Xiang J, Liu K, Chen Z, et al. YTHDF1-mediated translation amplifies Wnt-driven intestinal stemness. EMBO Rep. 2020;21:e49229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347:70–8.

    Article  CAS  PubMed  Google Scholar 

  58. Moore MJ, Zhang C, Gantman EC, Mele A, Darnell JC, Darnell RB. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat Protoc. 2014;9:263–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shah A, Qian Y, Weyn-Vanhentenryck SM, Zhang C. CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. Bioinforma (Oxf, Engl). 2017;33:566–7.

    CAS  Google Scholar 

  60. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma (Oxf, Engl). 2014;30:2114–20.

    CAS  Google Scholar 

  61. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinforma (Oxf, Engl). 2010;26:589–95.

    Google Scholar 

  62. Weyn-Vanhentenryck SM, Mele A, Yan Q, Sun S, Farny N, Zhang Z, et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 2014;6:1139–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma (Oxf, Engl). 2010;26:841–2.

    CAS  Google Scholar 

  64. Zhao L, Guo Z, Wang P, Zheng M, Yang X, Liu Y, et al. Proteomics of epicardial adipose tissue in patients with heart failure. J Cell Mol Med. 2020;24:511–20.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang SS, Chen TT, Zhu JW, Zhou Q, Chen X, Wang YQ, et al. [GSA: Genome Sequence Archive]. Yi Chuan. 2018;40:1044–7.

    PubMed  Google Scholar 

  66. Members BDC. The BIG Data Center: from deposition to integration to translation. Nucleic Acids Res. 2017;45:D18–D24.

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks for all the patients participated in our study and wish them good health. This work was supported by the National Key Research and Development Plan (2017YFE0196300), the National Natural Science Foundation of China (81772875, U1932135, 82073889), the Clinical Research Plan of SHDC (SHDC2020CR1009A), the Science and Technology Commission of Shanghai (20DZ2270800 and 19JC1410200).

Author information

Authors and Affiliations

Authors

Contributions

XQF and YGY designed the research, supervised the experiments and approved the paper. YFX and XYH performed the experiments with assistance from RBJ, PWC, FL, and YY; SZW and BFS performed the bioinformatics analyses and contributed to the experimental candidate selection; YFX, XYH, and SZW analyzed the data, and drafted the paper. SFG and RBJ was responsible for sample collection. All of the authors read and approved this paper.

Corresponding authors

Correspondence to Yun-Gui Yang or Xianqun Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Written informed consent was obtained from all patients enrolled in this study. The animal research was approved by the Shanghai Jiao Tong University School of Medicine Animal Care and Use Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., He, X., Wang, S. et al. The m6A reading protein YTHDF3 potentiates tumorigenicity of cancer stem-like cells in ocular melanoma through facilitating CTNNB1 translation. Oncogene 41, 1281–1297 (2022). https://doi.org/10.1038/s41388-021-02146-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02146-0

This article is cited by

Search

Quick links