Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PD-L1 interacts with Frizzled 6 to activate β-catenin and form a positive feedback loop to promote cancer stem cell expansion

Abstract

Cancer stem cells (CSCs) drive tumor initiation, progression, metastasis, and drug resistance. We report here that programmed cell death ligand 1 (PD-L1) is constitutively expressed in cancer cells to maintain and expand CSC through a novel mechanism in addition to promoting cancer cell immune evasion. We discovered that PD-L1 interacts with receptor Frizzled 6 to activate β-catenin signaling and increase β-catenin-targeted gene expression, such as a putative stem cell marker leucine-rich-repeat-containing G-protein-coupled receptor 5. Blockage of PD-L1 function, using a specific small hairpin RNA or a specific antibody, inhibits disease progression by reducing the CSC population in both colorectal and breast tumors. Moreover, β-catenin conversely regulates PD-L1 expression through a β-catenin complex binding site in the PD-L1 promoter. Our discoveries reveal that besides assistant tumor cell immune escaping, PD-L1 and β-catenin signaling form a positive feedback loop to promote cancer progression through CSC maintenance and expansion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumor-expressed PD-L1 contributes to cancer cell growth and metastasis in human colorectal cancer (CRC) HCT 116 and breast cancer MDA-MB-231 cell lines.
Fig. 2: PD-L1 positively regulates β-catenin signaling activity in CRC and breast cancer in vitro and in vivo.
Fig. 3: PD-L1 expression contributes to CSC expansion and LgR5 expression.
Fig. 4: PD-L1 expression in the transgenic Apcflox/flox/CDX2-CRE colorectal tumor mouse also contributes to stem cell expansion.
Fig. 5: PD-L1 expression is co-related with the expressions of LgR5 and other stem cell markers in breast and gastric cancer patient samples.
Fig. 6: β-Catenin transcriptionally regulates PD-L1 expression in HCT 116 and MDA-MB-231 cancer cell lines.
Fig. 7: PD-L1 interacts with FDZ6 to activate β-catenin signaling in HCT 116 and MDA-MB-231 cancer cells.
Fig. 8: Graphical summary.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Society AC. American Cancer Society Cancer Statistics 2021 Report. J Nucl Med. 2021;62:12N.

    Google Scholar 

  3. Barker N, Ridgway RA, van Es JH, van de WM, Begthel H, van den BM, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.

    Article  CAS  PubMed  Google Scholar 

  4. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  5. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1:389–402.

    Article  CAS  PubMed  Google Scholar 

  6. Devon AL, Nirav RB, Kai K, Karin DP, Ying Y, Ken T, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526:131–5.

    Article  Google Scholar 

  7. Nikolai L, Marina I, Matvey T, Polina K, Irina D, Alina P, et al. Amplifications of stemness genes and the capacity of breast tumors for metastasis. Oncotarget. 2020;11:1988–2001.

    Article  Google Scholar 

  8. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 2008;105:13427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hashimoto Y, Yasukawa M, Takada K, Hato T, Fujita S. Malignant lymphoma originating from the earliest T-lineage precursor cell. Am J Hematol. 1993;43:319–21.

    Article  CAS  PubMed  Google Scholar 

  10. Pearce DJ, Taussig D, Simpson C, Allen K, Rohatiner AZ, Lister TA, et al. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells. 2005;23:752–60.

    Article  CAS  PubMed  Google Scholar 

  11. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003;100:15178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kawai T, Yasuchika K, Ishii T, Miyauchi Y, Kojima H, Yamaoka R, et al. SOX9 is a novel cancer stem cell marker surrogated by osteopontin in human hepatocellular carcinoma. Sci Rep. 2016;6:30489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong SJ, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  CAS  PubMed  Google Scholar 

  15. Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol. 1999;154:515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shenoy AK, Fisher RC, Butterworth EA, Pi L, Chang LJ, Appelman HD, et al. Transition from colitis to cancer: high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors. Cancer Res. 2012;72:5091–5100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell. 1999;99:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Raay TJ, Moore KB, Iordanova I, Steele M, Jamrich M, Harris WA, et al. Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina. Neuron. 2005;46:23–36.

    Article  PubMed  Google Scholar 

  19. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8:739–50.

    Article  CAS  PubMed  Google Scholar 

  20. Kanwar SS, Yu Y, Nautiyal J, Patel BB, Majumdar AP. The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer. 2010;9:212.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  CAS  PubMed  Google Scholar 

  22. Fevr T, Robine S, Louvard D, Huelsken J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol. 2007;27:7551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. FZD6. The HUMAN PROTEIN ATLAS. 2021. https://www.proteinatlas.org/ENSG00000164930-FZD6.

  24. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–56.

    Article  CAS  PubMed  Google Scholar 

  25. Corda G, Sala A. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis. 2017;6:e364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and beta-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee Y, Shin JH, Longmire M, Wang H, Kohrt HE, Chang HY, et al. CD44+ cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res. 2016;22:3571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yanheng W, Mingshui C, Peihong W, Chen C, ZhiPing X, Wenyi G. Increased PD‐L1 expression in breast and colon cancer stem cells. Clin Exp Pharm Physiol. 2017;44:3.

    Google Scholar 

  29. Castagnoli L, Cancila V, Cordoba-Romero SL, Faraci S, Talarico G, Belmonte B, et al. WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene. 2019;38:4047–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang W, Tong Z, Shu-Chou D, Jian-Chang W, Ping Y, Qiang W, et al. PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett. 2019;450:1–13.

    Article  Google Scholar 

  31. Mansour FA, Al-Mazrou A, Al-Mohanna F, Al-Alwan M, Ghebeh H. PD-L1 is overexpressed on breast cancer stem cells through notch3/mTOR axis. Oncoimmunology. 2020;9:1729299.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dong P, Xiong Y, Yue J, Hanley SJB, Watari H. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol. 2018;8:386.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Michael FC, John ED, Peter BD, Connie JE, Catriona HMJ, Jones DL, et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  Google Scholar 

  34. Liu Z, Dai W, Jiang L, Cheng Y. Over-expression of LGR5 correlates with poor survival of colon cancer in mice as well as in patients. Neoplasma. 2014;61:177–85.

    Article  PubMed  Google Scholar 

  35. Yang L, Tang H, Kong Y, Xie X, Chen J, Song C, et al. LGR5 promotes breast cancer progression and maintains stem-like cells through activation of Wnt/beta-catenin signaling. Stem Cells. 2015;33:2913–24.

    Article  CAS  PubMed  Google Scholar 

  36. Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007;67:9721–30.

    Article  CAS  PubMed  Google Scholar 

  37. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491:254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adams S, Chakravarthy AB, Donach M, Spicer D, Lymberis S, Singh B, et al. Preoperative concurrent paclitaxel-radiation in locally advanced breast cancer: pathologic response correlates with five-year overall survival. Breast Cancer Res Treat. 2010;124:723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coelho MA, de Carne Trecesson S, Rana S, Zecchin D, Moore C, Molina-Arcas M, et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity. 2017;47:1083–99. e1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell. 2012;149:1245–56.

    Article  CAS  PubMed  Google Scholar 

  42. Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Turrini O, et al. Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget. 2016;7:71198–210.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin YM, Sung WW, Hsieh MJ, Tsai SC, Lai HW, Yang SM, et al. High PD-L1 expression correlates with metastasis and poor prognosis in oral squamous cell carcinoma. PLoS One. 2015;10:e0142656.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zheng A, Li F, Chen F, Zuo J, Wang L, Wang Y, et al. PDL1 promotes head and neck squamous cell carcinoma cell growth through mTOR signaling. Oncol Rep. 2019;41:2833–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST. Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res. 2008;68:3655–61.

    Article  CAS  PubMed  Google Scholar 

  46. Tokuhara M, Hirai M, Atomi Y, Terada M, Katoh M. Molecular cloning of human Frizzled-6. Biochem Biophys Res Commun. 1998;243:622–7.

    Article  CAS  PubMed  Google Scholar 

  47. Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 2017;241:350–61.

    Article  CAS  PubMed  Google Scholar 

  48. Cantilena S, Pastorino F, Pezzolo A, Chayka O, Pistoia V, Ponzoni M, et al. Frizzled receptor 6 marks rare, highly tumourigenic stem-like cells in mouse and human neuroblastomas. Oncotarget. 2011;2:976–83.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Garcia MI, Ghiani M, Lefort A, Libert F, Strollo S, Vassart G. LGR5 deficiency deregulates Wnt signaling and leads to precocious Paneth cell differentiation in the fetal intestine. Dev Biol. 2009;331:58–67.

    Article  CAS  PubMed  Google Scholar 

  50. Tong G, Cheng B, Li J, Wu X, Nong Q, He L, et al. MACC1 regulates PD-L1 expression and tumor immunity through the c-Met/AKT/mTOR pathway in gastric cancer cells. Cancer Med. 2019;8:7044–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, et al. PDL1 regulation by p53 via miR-34. J Natl Cancer Inst. 2015;108:djv303

    PubMed  PubMed Central  Google Scholar 

  52. Du L, Lee JH, Jiang H, Wang C, Wang S, Zheng Z, et al. beta-Catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J Exp Med. 2020;217:e20191115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Finkbeiner SR, Spence JR. A gutsy task: generating intestinal tissue from human pluripotent stem cells. Dig Dis Sci. 2013;58:1176–84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Suwon Kim for her assistance with the Gene Expression Omnibus. We also thank Kiera Fleck, Alan Ross, and Jax Ramsey for their help with the manuscript.

Funding

This work was supported by grants National Institutes of Health/National Cancer Institute (CA249517 to WK); Arizona State University (Startup fund 5300 to WK); National Institutes of Health National/Institute of Dental and Craniofacial (DE024607 to YS and WK).

Author information

Authors and Affiliations

Authors

Contributions

LF and WK conceptualized the study and designed the experiments. LF, WK, and JF performed the experiments. LF, WK, YS, GM, and JF wrote the manuscript. SM assisted with LC-MS/MS data analysis. All authors discussed results and participated in manuscript preparation and editing. WK, YS, and GM supervised the study.

Corresponding authors

Correspondence to Yixin Shi or Wei Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Fan, J., Maity, S. et al. PD-L1 interacts with Frizzled 6 to activate β-catenin and form a positive feedback loop to promote cancer stem cell expansion. Oncogene 41, 1100–1113 (2022). https://doi.org/10.1038/s41388-021-02144-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02144-2

This article is cited by

Search

Quick links