Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BRD4 drives esophageal squamous cell carcinoma growth by promoting RCC2 expression

Abstract

The low survival rate of esophageal squamous cell carcinoma patients is primarily attributed to technical limitations and a lack of insight regarding the molecular mechanisms contributing to its progression. Alterations in epigenetic modulators are critical to cancer development and prognosis. BRD4, a chromatin reader protein, plays an essential role in regulating oncogene expression. Here, we investigated the contributing role of BRD4 and its related mechanisms in the context of ESCC tumor progression. Our observations showed that BRD4 transcript and protein expression levels are significantly increased in ESCC patient tissues. Genetic or pharmacological inhibition of BRD4 suppressed ESCC cell proliferation in vitro and in vivo. Proteomic and transcriptomic analyses were subsequently used to deduce the potential targets of BRD4. Mechanistic studies showed that RCC2 is a downstream target of BRD4. Inhibition of either BRD4 or RCC2 resulted in decreased ESCC cell proliferation. The BRD4-TP73 interaction facilitated the binding of BRD4 complex to the promoter region of RCC2, and subsequently modulated RCC2 transcription. Furthermore, targeting BRD4 with inhibitors significantly decreased tumor volume in ESCC PDX models, indicating that BRD4 expression may contribute to tumor progression. Collectively, these findings suggest that BRD4 inhibition could be a promising strategy to treat ESCC by downregulating RCC2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BRD4 is highly expressed in ESCC.
Fig. 2: BRD4 promotes cell proliferation in ESCC.
Fig. 3: BRD4 upregulates RCC2 expression.
Fig. 4: BRD4 regulates promoter activity of RCC2 through TP73.
Fig. 5: RCC2 is highly expressed in ESCC and promotes cell proliferation in ESCC.
Fig. 6: Anti-tumor activity of BRD4 inhibitors (+)-JQ1 and OTX015 in ESCC PDX models and RCC2 expression was assessed in several ESCC PDX model cases.
Fig. 7: A schematic model illustrating the findings of this paper.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. S EC, L J, F RC, L F, S MA, L P, et al. Oesophageal cancer. Nat Rev. 2017;3:17048.

    Google Scholar 

  3. Shah MA. Update on metastatic gastric and esophageal cancers. J Clin Oncol. 2015;33:1760–9.

    Article  CAS  PubMed  Google Scholar 

  4. Thrumurthy SG, Chaudry MA, Thrumurthy S, Mughal M. Oesophageal cancer: risks, prevention, and diagnosis. BMJ. 2019;366:l4373.

    Article  PubMed  Google Scholar 

  5. Song Y, Li L, Ou Y, Gao Z, Li E, Li X, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–5.

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–75.

    Article  Google Scholar 

  7. Hu N, Kadota M, Liu H, Abnet CC, Su H, Wu H, et al. Genomic landscape of somatic alterations in esophageal squamous cell carcinoma and gastric cancer. Cancer Res. 2016;76:1714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46:1097–102.

    Article  CAS  PubMed  Google Scholar 

  9. Lin DC, Wang MR, Koeffler HP. Genomic and epigenomic aberrations in esophageal squamous cell carcinoma and implications for patients. Gastroenterology. 2018;154:374–89.

    Article  PubMed  Google Scholar 

  10. Hu N, Wang C, Ng D, Clifford R, Yang HH, Tang ZZ, et al. Genomic characterization of esophageal squamous cell carcinoma from a high-risk population in China. Cancer Res. 2009;69:5908–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dutton SJ, Ferry DR, Blazeby JM, Abbas H, Dahle-Smith A, Mansoor W, et al. Gefitinib for oesophageal cancer progressing after chemotherapy (COG): a phase 3, multicentre, double-blind, placebo-controlled randomised trial. Lancet Onco. 2014;15:894–904.

    Article  CAS  Google Scholar 

  12. Sawada G, Niida A, Uchi R, Hirata H, Shimamura T, Suzuki Y, et al. Genomic landscape of esophageal squamous cell carcinoma in a Japanese population. Gastroenterology. 2016;150:1171–82.

    Article  PubMed  Google Scholar 

  13. Cao W, Lee H, Wu W, Zaman A, McCorkle S, Yan M, et al. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat Commun. 2020;11:3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu X, Lu X, Liu R, Ai N, Cao Z, Li Y, et al. Histone cross-talk connects protein phosphatase 1alpha (PP1alpha) and histone deacetylase (HDAC) pathways to regulate the functional transition of bromodomain-containing 4 (BRD4) for inducible gene expression. J Biol Chem. 2014;289:23154–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Padmanabhan A, Alexanian M, Linares-Saldana R, Gonzalez-Teran B, Andreoletti G, Huang Y, et al. BRD4 (bromodomain-containing protein 4) interacts with GATA4 (GATA binding protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation. 2020;142:2338–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, et al. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature. 2020;578:306–10.

    Article  CAS  PubMed  Google Scholar 

  18. Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell. 2005;19:523–34.

    Article  CAS  PubMed  Google Scholar 

  19. Winter GE, Mayer A, Buckley DL, Erb MA, Roderick JE, Vittori S, et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol Cell. 2017;67:5–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA. 2011;108:16669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Henssen A, Althoff K, Odersky A, Beckers A, Koche R, Speleman F, et al. Targeting MYCN-driven transcription By BET-bromodomain inhibition. Clin Cancer Res. 2016;22:2470–81.

    Article  CAS  PubMed  Google Scholar 

  25. Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013;3:308–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sanchez-Rivera FJ, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lockwood WW, Zejnullahu K, Bradner JE, Varmus H. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA. 2012;109:19408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagarajan S, Bedi U, Budida A, Hamdan FH, Mishra VK, Najafova Z, et al. BRD4 promotes p63 and GRHL3 expression downstream of FOXO in mammary epithelial cells. Nucleic Acids Res. 2017;45:3130–45.

    CAS  PubMed  Google Scholar 

  29. Fontanals-Cirera B, Hasson D, Vardabasso C, Di Micco R, Agrawal P, Chowdhury A, et al. Harnessing bet inhibitor sensitivity reveals AMIGO2 as a melanoma survival gene. Mol Cell. 2017;68:731–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng Q, Zhang Z, Shea MJ, Creighton CJ, Coarfa C, Hilsenbeck SG, et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 2014;24:809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mollinari C, Reynaud C, Martineau-Thuillier S, Monier S, Kieffer S, Garin J, et al. The mammalian passenger protein TD-60 is an RCC1 family member with an essential role in prometaphase to metaphase progression. Dev Cell. 2003;5:295–307.

    Article  CAS  PubMed  Google Scholar 

  32. Matsuo M, Nakada C, Tsukamoto Y, Noguchi T, Uchida T, Hijiya N, et al. MiR-29c is downregulated in gastric carcinomas and regulates cell proliferation by targeting RCC2. Mol Cancer. 2013;12:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pang B, Wu N, Guan R, Pang L, Li X, Li S, et al. Overexpression of RCC2 enhances cell motility and promotes tumor metastasis in lung adenocarcinoma by inducing epithelial-mesenchymal transition. Clin Cancer Res. 2017;23:5598–610.

    Article  CAS  PubMed  Google Scholar 

  34. Calderon-Aparicio A, Yamamoto H, De Vitto H, Zhang T, Wang Q, Bode AM, et al. RCC2 promotes esophageal cancer growth by regulating activity and expression of the Sox2 transcription factor. Mol Cancer Res. 2020;18:1660–74.

    Article  CAS  PubMed  Google Scholar 

  35. Nimura Y, Mihara M, Ichimiya S, Sakiyama S, Seki N, Ohira M, et al. p73, a gene related to p53, is not mutated in esophageal carcinomas. Int J Cancer. 1998;78:437–40.

    Article  CAS  PubMed  Google Scholar 

  36. Dulloo I, Phang BH, Othman R, Tan SY, Vijayaraghavan A, Goh LK, et al. Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nat Cell Biol. 2015;17:511–23.

    Article  CAS  PubMed  Google Scholar 

  37. Vikhanskaya F, Toh WH, Dulloo I, Wu Q, Boominathan L, Ng HH, et al. p73 supports cellular growth through c-Jun-dependent AP-1 transactivation. Nat Cell Biol. 2007;9:698–705.

    Article  CAS  PubMed  Google Scholar 

  38. Chandrashekar DS, Bashel B, Balasubramanya S, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zanconato F, Battilana G, Forcato M, Filippi L, Azzolin L, Manfrin A, et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat Med. 2018;24:1599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349:2241–52.

    Article  CAS  PubMed  Google Scholar 

  42. Yang H, Su H, Hu N, Wang C, Wang L, Giffen C, et al. Integrated analysis of genome-wide miRNAs and targeted gene expression in esophageal squamous cell carcinoma (ESCC) and relation to prognosis. BMC Cancer. 2020;20:388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su H, Hu N, Yang HH, Wang C, Takikita M, Wang QH, et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin Cancer Res. 2011;17:2955–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3:e186–95.

    Article  PubMed  Google Scholar 

  45. Siu KT, Ramachandran J, Yee AJ, Eda H, Santo L, Panaroni C, et al. Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma. Leukemia. 2017;31:1760–9.

    Article  CAS  PubMed  Google Scholar 

  46. Mirguet O, Gosmini R, Toum J, Clement CA, Barnathan M, Brusq JM, et al. Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J Med Chem. 2013;56:7501–15.

    Article  CAS  PubMed  Google Scholar 

  47. Matsuo M, Nakada C, Tsukamoto Y, Noguchi T, Uchida T, Hijiya N, et al. MiR-29c is downregulated in gastric carcinomas and regulates cell proliferation by targeting RCC2. Mol Cancer. 2013;12:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pang B, Wu N, Guan R, Pang L, Li X, Li S, et al. Overexpression of RCC2 enhances cell motility and promotes tumor metastasis in lung adenocarcinoma by inducing epithelial–mesenchymal transition. Clin Cancer Res. 2017;23:5598–610.

    Article  CAS  PubMed  Google Scholar 

  49. Chen Q, Jiang P, Jia B, Liu Y, Zhang Z. RCC2 contributes to tumor invasion and chemoresistance to cisplatin in hepatocellular carcinoma. Hum Cell. 2020;33:709–20.

    Article  CAS  PubMed  Google Scholar 

  50. Yu H, Zhang S, Ibrahim AN, Wang J, Deng Z, Wang M. RCC2 promotes proliferation and radio-resistance in glioblastoma via activating transcription of DNMT1. Biochem Biophys Res Commun. 2019;516:999–1006.

    Article  CAS  PubMed  Google Scholar 

  51. Bruun J, Kolberg M, Ahlquist TC, Røyrvik EC, Nome T, Leithe E, et al. Regulator of chromosome condensation 2 identifies high-risk patients within both major phenotypes of colorectal cancer. Clin Cancer Res. 2015;21:3759–70.

    Article  CAS  PubMed  Google Scholar 

  52. Song C, Liang L, Jin Y, Li Y, Liu Y, Guo L, et al. RCC2 is a novel p53 target in suppressing metastasis. Oncogene. 2018;37:8–17.

    Article  CAS  PubMed  Google Scholar 

  53. Stiewe T, Putzer BM. Role of p73 in malignancy: tumor suppressor or oncogene? Cell Death Diffe. 2002;9:237–45.

    Article  CAS  Google Scholar 

  54. Melino G, De Laurenzi V, Vousden KH. p73: friend or foe in tumorigenesis. Nat Rev Cancer. 2002;2:605–15.

    Article  CAS  PubMed  Google Scholar 

  55. Dominguez G, Silva JM, Silva J, Garcia JM, Sanchez A, Navarro A, et al. Wild type p73 overexpression and high-grade malignancy in breast cancer. Breast Cancer Res Treat. 2001;66:183–90.

    Article  CAS  PubMed  Google Scholar 

  56. Zaika AI, Kovalev S, Marchenko ND, Moll UM. Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer Res. 1999;59:3257–63.

    CAS  PubMed  Google Scholar 

  57. Tomkova K, Belkhiri A, El-Rifai W, Zaika AI. p73 isoforms can induce T-cell factor-dependent transcription in gastrointestinal cells. Cancer Res. 2004;64:6390–3.

    Article  CAS  PubMed  Google Scholar 

  58. Tannapfel A, Wasner M, Krause K, Geissler F, Katalinic A, Hauss J, et al. Expression of p73 and its relation to histopathology and prognosis in hepatocellular carcinoma. J Natl Cancer Ins. 1999;91:1154–8.

    Article  CAS  Google Scholar 

  59. Novak U, Grob TJ, Baskaynak G, Peters UR, Aebi S, Zwahlen D, et al. Overexpression of the p73 gene is a novel finding in high-risk B-cell chronic lymphocytic leukemia. Ann Oncol. 2001;12:981–6.

    Article  CAS  PubMed  Google Scholar 

  60. Li L, Li L, Li W, Chen T, Bin Z, Zhao L, et al. TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation. Nat Commun. 2018;9:4683.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sharif T, Dai C, Martell E, Ghassemi-Rad MS, Hanes MR, Murphy PJ, et al. TAp73 modifies metabolism and positively regulates growth of cancer stem-like cells in a redox-sensitive manner. Clin Cancer Res. 2019;25:2001–17.

    Article  CAS  PubMed  Google Scholar 

  62. Carrasco G, Diaz J, Valbuena JR, Ibanez P, Rodriguez P, Araya G, et al. Overexpression of p73 as a tissue marker for high-risk gastritis. Clin Cancer Res. 2010;16:3253–9.

    Article  CAS  PubMed  Google Scholar 

  63. Nozaki M, Tada M, Kashiwazaki H, Hamou MF, Diserens AC, Shinohe Y, et al. p73 is not mutated in meningiomas as determined with a functional yeast assay but p73 expression increases with tumor grade. Brain Pathol. 2001;11:296–305.

    Article  CAS  PubMed  Google Scholar 

  64. Soldevilla B, Diaz R, Silva J, Campos-Martin Y, Munoz C, Garcia V, et al. Prognostic impact of DeltaTAp73 isoform levels and their target genes in colon cancer patients. Clin Cancer Res. 2011;17:6029–39.

    Article  CAS  PubMed  Google Scholar 

  65. Dominguez G, Garcia JM, Pena C, Silva J, Garcia V, Martinez L, et al. DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol. 2006;24:805–15.

    Article  CAS  PubMed  Google Scholar 

  66. Liu K, Yu D, Cho YY, Bode AM, Ma W, Yao K, et al. Sunlight UV-induced skin cancer relies upon activation of the p38alpha signaling pathway. Cancer Res. 2013;73:2181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiang Y, Wu Q, Yang X, Zhao J, Jin Y, Li K, et al. A method for establishing a patient-derived xenograft model to explore new therapeutic strategies for esophageal squamous cell carcinoma. Oncol Rep. 2016;35:785–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundations of China (Grant no. 81872335), National Science & Technology Major Project Key New Drug Creation and Manufacturing Program, China (No. 2018ZX09711002) and Central Plains Science and Technology Innovation Leading Talents (KL). We thank all members of our team for critical input and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

QW designed and performed the most of experiments and the data analysis; FL, MG and LW helped in animal experimentation; KVL took charge of bioinformatics analyses; QW and KVL prepared and revised the manuscript; RD, MJ, GJ, and SZ provided technique supports; JZ and YZ helped perform in vitro assays. DJK and ZD supervise the overall experimental design. KL designed and supervised the study; All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dong Joon Kim, Zigang Dong or Kangdong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study was approved by the Ethics Committee of Zhengzhou University. All the animal experiments performed in this study were approved by the Institutional Animal Care and Use Committee of Zhengzhou University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Liu, F., Ge, M. et al. BRD4 drives esophageal squamous cell carcinoma growth by promoting RCC2 expression. Oncogene 41, 347–360 (2022). https://doi.org/10.1038/s41388-021-02099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02099-4

This article is cited by

Search

Quick links