Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

OLFM4-RET fusion is an oncogenic driver in small intestine adenocarcinoma

Abstract

Small intestine adenocarcinoma is a rare intestinal malignancy with distinct clinical, pathological, and molecular characteristics. Recently, a fusion of the intestinal stem-cell marker olfactomedin 4 (OLFM4) and the proto-oncogene RET has been identified in a small intestine adenocarcinoma patient. Here we investigated the biological effects of OLFM4-RET fusion and whether it can initiate tumorigenesis in small intestine. OLFM4 expression was found to be frequently lost or reduced in human small intestine adenocarcinoma, and its downregulation correlated with high tumor grade and advanced tumor stage. Expression of OLFM4-RET fusion-induced cellular transformation in HEK293 cells and blocked RET-induced inhibition of colony growth in HuTu 80 small intestine adenocarcinoma cells. Further, expression of OLFM4-RET activated the RAS-RAF-MAPK and STAT3 cell signaling pathways in both HEK293 cells and HuTu 80 cells. OLFM4-RET expression in HEK293 cells upregulated multiple families of genes related to carcinogenesis, cancer progression, and metastasis. Targeted expression of OLFM4-RET in the small intestine led to the development of hyperplasia, adenoma, or adenocarcinoma in transgenic mice. Our study suggests that OLFM4-RET is an oncogenic driver of small intestine tumorigenesis. Therefore, the small intestine adenocarcinoma patients with OLFM4-RET fusion may benefit from treatment with RET kinase inhibitor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OLFM4 expression in normal small intestine and small intestine adenocarcinoma.
Fig. 2: OLFM4-RET fusion expression in HEK293 cells affects cellular proliferation and colony formation.
Fig. 3: OLFM4 N-terminal coiled-coil domain mediates OLFM4 and OLFM4-RET oligomerization.
Fig. 4: OLFM4-RET expression increases RET (Y905) autophosphorylation and activates the MAPK-ERK1/2 and STAT3 signaling pathways.
Fig. 5: OLFM4-RET induces expression of genes associated with carcinogenesis and cancer progression in HEK293 cells.
Fig. 6: Differential effect of RET and OLFM4-RET expression on cell proliferation, tumorigenesis, and cell signaling in HuTu 80 small intestine adenocarcinoma cells.
Fig. 7: OLFM4-RET transgenic mice develop tumors in small intestine.

Similar content being viewed by others

References

  1. Raghav K, Overman MJ. Small bowel adenocarcinomas-existing evidence and evolving paradigms. Nat Rev Clin Oncol. 2013;10:534–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Weering DH, Medema JP, van Puijenbroek A, Burgering BM, Baas PD, Bos JL. Ret receptor tyrosine kinase activates extracellular signal-regulated kinase 2 in SK-N-MC cells. Oncogene. 1995;11:2207–14.

    PubMed  Google Scholar 

  3. Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, Santoro M, et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem. 2006;281:33577–87.

    Article  CAS  PubMed  Google Scholar 

  4. Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci. 2003;116:3855–62.

    Article  CAS  PubMed  Google Scholar 

  5. Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol. 2013;5:a009233.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–80.

    Article  CAS  PubMed  Google Scholar 

  7. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60:557–63.

    Article  CAS  PubMed  Google Scholar 

  8. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012;22:436–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18:375–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ballerini P, Struski S, Cresson C, Prade N, Toujani S, Deswarte C, et al. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia. 2012;26:2384–9.

    Article  CAS  PubMed  Google Scholar 

  11. Le Rolle AF, Klempner SJ, Garrett CR, Seery T, Sanford EM, Balasubramanian S, et al. Identification and characterization of RET fusions in advanced colorectal cancer. Oncotarget. 2015;6:28929–37.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu W, Rodgers GP. Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer. Cancer Metastasis Rev. 2016;35:201–12.

    Article  PubMed  Google Scholar 

  13. Zhang J, Liu WL, Tang DC, Chen L, Wang M, Pack SD, et al. Identification and characterization of a novel member of olfactomedin-related protein family, hGC-1, expressed during myeloid lineage development. Gene. 2002;283:83–93.

    Article  CAS  PubMed  Google Scholar 

  14. van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 2009;137:15–17.

    Article  PubMed  Google Scholar 

  15. Liu W, Zhu J, Cao L, Rodgers GP. Expression of hGC-1 is correlated with differentiation of gastric carcinoma. Histopathology. 2007;51:157–65.

    Article  CAS  PubMed  Google Scholar 

  16. Liu W, Liu Y, Zhu J, Wright E, Ding I, Rodgers GP. Reduced hGC-1 protein expression is associated with malignant progression of colon carcinoma. Clin Cancer Res. 2008;14:1041–9.

    Article  CAS  PubMed  Google Scholar 

  17. Liu W, Li H, Hong SH, Piszczek GP, Chen W, Rodgers GP. Olfactomedin 4 deletion induces colon adenocarcinoma in Apc mice. Oncogene. 2016;35:5237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reeser JW, Martin D, Miya J, Kautto EA, Lyon E, Zhu E, et al. Validation of a Targeted RNA Sequencing Assay for Kinase Fusion Detection in Solid Tumors. J Mol Diagn. 2017;19:682–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tallini G, Asa SL. RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol. 2001;8:345–54.

    Article  CAS  PubMed  Google Scholar 

  20. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14:173–86.

    Article  CAS  PubMed  Google Scholar 

  21. Hwang JH, Kim DW, Suh JM, Kim H, Song JH, Hwang ES, et al. Activation of signal transducer and activator of transcription 3 by oncogenic RET/PTC (rearranged in transformation/papillary thyroid carcinoma) tyrosine kinase: roles in specific gene regulation and cellular transformation. Mol Endocrinol. 2003;17:1155–66.

    Article  CAS  PubMed  Google Scholar 

  22. Luo Y, Tsuchiya KD, Il Park D, Fausel R, Kanngurn S, Welcsh P, et al. RET is a potential tumor suppressor gene in colorectal cancer. Oncogene. 2013;32:2037–47.

    Article  CAS  PubMed  Google Scholar 

  23. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18:382–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sasselli V, Pachnis V, Burns AJ. The enteric nervous system. Dev Biol. 2012;366:64–73.

    Article  CAS  PubMed  Google Scholar 

  25. Perea D, Guiu J, Hudry B, Konstantinidou C, Milona A, Hadjieconomou D, et al. Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia. Embo J. 2017;36:3029–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smanik PA, Furminger TL, Mazzaferri EL, Jhiang SM. Breakpoint characterization of the ret/PTC oncogene in human papillary thyroid carcinoma. Hum Mol Genet. 1995;4:2313–8.

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Vega QC, Decker RA, Pandey A, Worby CA, Dixon JE. Oncogenic RET receptors display different autophosphorylation sites and substrate binding specificities. J Biol Chem. 1996;271:5309–12.

    Article  CAS  PubMed  Google Scholar 

  28. Kawamoto Y, Takeda K, Okuno Y, Yamakawa Y, Ito Y, Taguchi R, et al. Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem. 2004;279:14213–24.

    Article  CAS  PubMed  Google Scholar 

  29. Leone V, Mansueto G, Pierantoni GM, Tornincasa M, Merolla F, Cerrato A, et al. CCDC6 represses CREB1 activity by recruiting histone deacetylase 1 and protein phosphatase 1. Oncogene. 2010;29:4341–51.

    Article  CAS  PubMed  Google Scholar 

  30. Kollara A, Kahn HJ, Marks A, Brown TJ. Loss of androgen receptor associated protein 70 (ARA70) expression in a subset of HER2-positive breast cancers. Breast Cancer Res Treat. 2001;67:245–53.

    Article  CAS  PubMed  Google Scholar 

  31. Bordeaux MC, Forcet C, Granger L, Corset V, Bidaud C, Billaud M, et al. The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. Embo J. 2000;19:4056–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cañibano C, Rodriguez NL, Saez C, Tovar S, Garcia-Lavandeira M, Borrello MG, et al. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. Embo j. 2007;26:2015–28.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 2010;661:3–38.

    Article  CAS  PubMed  Google Scholar 

  34. Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res. 2018;138:99–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bläker H, Helmchen B, Bönisch A, Aulmann S, Penzel R, Otto HF, et al. Mutational activation of the RAS-RAF-MAPK and the Wnt pathway in small intestinal adenocarcinomas. Scand J Gastroenterol. 2004;39:748–53.

    Article  PubMed  Google Scholar 

  36. Shirokawa JM, Elisei R, Knauf JA, Hara T, Wang J, Saavedra HI, et al. Conditional apoptosis induced by oncogenic ras in thyroid cells. Mol Endocrinol. 2000;14:1725–38.

    Article  CAS  PubMed  Google Scholar 

  37. Resemann HK, Watson CJ, Lloyd-Lewis B. The Stat3 paradox: a killer and an oncogene. Mol Cell Endocrinol. 2014;382:603–11.

    Article  CAS  PubMed  Google Scholar 

  38. Levy DE, Inghirami G. STAT3: a multifaceted oncogene. Proc Natl Acad Sci USA. 2006;103:10151–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jhiang SM, Sagartz JE, Tong Q, Parker-Thornburg J, Capen CC, Cho JY, et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996;137:375–8.

    Article  CAS  PubMed  Google Scholar 

  40. Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G, et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene. 1996;12:1821–6.

    CAS  PubMed  Google Scholar 

  41. Powell DJ Jr., Russell J, Nibu K, Li G, Rhee E, Liao M, et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 1998;58:5523–8.

    CAS  PubMed  Google Scholar 

  42. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13:184–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu W, Chen L, Zhu J, Rodgers GP. The glycoprotein hGC-1 binds to cadherin and lectins. Exp Cell Res. 2006;312:1785–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Deborah Gumucio at the University of Michigan for providing the Villin-ΔATG plasmid. We thank Ms. Huiyan Lu at the National Institute of Diabetes and Digestive and Kidney Disease, NIH for assistance in creating the Villin-OLFM4-RET transgenic mice. We thank Drs. Yuesheng Li, Poching Liu, and Yan Luo at the DNA Sequencing and Genomics Core Facility, National Heart, Lung, and Blood Institute, NIH for help with RNA sequencing and data analysis.

Author information

Authors and Affiliations

Authors

Contributions

WL and GPR designed the experiments and analyzed the data. WL, HL, WA, and IB performed the experiments. WL wrote the manuscript. GPR supervised the entire study.

Corresponding author

Correspondence to Griffin P. Rodgers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, H., Aerbajinai, W. et al. OLFM4-RET fusion is an oncogenic driver in small intestine adenocarcinoma. Oncogene 41, 72–82 (2022). https://doi.org/10.1038/s41388-021-02072-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02072-1

This article is cited by

Search

Quick links