Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcineurin inactivation inhibits pyruvate dehydrogenase complex activity and induces the Warburg effect

Abstract

Calcineurin is a calcium- and calmodulin-dependent serine/threonine protein phosphatase that connects the Ca2+-dependent signalling to multiple cellular responses. Calcineurin inhibitors (CNIs) have been widely used to suppress immune response in allograft patients. However, CNIs significantly increase cancer incidence in transplant recipients compared with the general population. Accumulating evidence suggests that CNIs may promote the malignant transformation of cancer cells in addition to its role in immunosuppression, but the underlying mechanisms remain poorly understood. Here, we show that calcineurin interacts with pyruvate dehydrogenase complex (PDC), a mitochondrial gatekeeper enzyme that connects two key metabolic pathways of cells, glycolysis and the tricarboxylic acid cycle. Mitochondrial-localized calcineurin dephosphorylates PDHA1 at Ser232, Ser293 and Ser300, and thus enhances PDC enzymatic activity, remodels cellular glycolysis and oxidative phosphorylation, and suppresses cancer cell proliferation. Hypoxia attenuates mitochondrial translocation of calcineurin to promote PDC inactivation. Moreover, CNIs promote metabolic remodelling and the Warburg effect by blocking calcineurin-mediated PDC activation in cancer cells. Our findings indicate that calcineurin is a critical regulator of mitochondrial metabolism and suggest that CNIs may promote tumorigenesis through inhibition of the calcineurin-PDC pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of PDHA1 and PDHB as calcineurin interactors.
Fig. 2: calcineurin dephosphorylates PDHA1.
Fig. 3: Calcineurin regulates PDC activity and oxidative phosphorylation.
Fig. 4: Mitochondrial-localized calcineurin inhibits tumor cell proliferation under hypoxia.
Fig. 5: CNIs modulate the mitochondrial OXPHOS.

Similar content being viewed by others

References

  1. Ume AC, Pugh JM, Kemp MG, Williams CR. Calcineurin inhibitor (CNI)-associated skin cancers: new insights on exploring mechanisms by which CNIs downregulate DNA repair machinery. Photodermatol Photoimmunol Photomed. 2020;36:433–40.

    Article  CAS  PubMed  Google Scholar 

  2. Klee CB, Crouch TH, Krinks MH. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA. 1979;76:6270–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev. 2000;80:1483–521.

    Article  CAS  PubMed  Google Scholar 

  4. Muramatsu T, Kincaid RL. Molecular cloning and chromosomal mapping of the human gene for the testis-specific catalytic subunit of calmodulin-dependent protein phosphatase (calcineurin A). Biochem Biophys Res Commun. 1992;188:265–71.

    Article  CAS  PubMed  Google Scholar 

  5. Liu L, Zhang J, Yuan J, Dang Y, Yang C, Chen X, et al. Characterization of a human regulatory subunit of protein phosphatase 3 gene (PPP3RL) expressed specifically in testis. Mol Biol Rep. 2005;32:41–5.

    Article  PubMed  Google Scholar 

  6. Kung L, Halloran PF. Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. Transplantation. 2000;70:327–35.

    Article  CAS  PubMed  Google Scholar 

  7. Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, et al. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell. 1995;82:507–22.

    Article  CAS  PubMed  Google Scholar 

  8. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, et al. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature. 1995;378:641–4.

    Article  CAS  PubMed  Google Scholar 

  9. Pfluger PT, Kabra DG, Aichler M, Schriever SC, Pfuhlmann K, Garcia VC, et al. Calcineurin links mitochondrial elongation with energy metabolism. Cell Metab. 2015;22:838–50.

    Article  CAS  PubMed  Google Scholar 

  10. Cereghetti GM, Costa V, Scorrano L. Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin. Cell Death Differ. 2010;17:1785–94.

    Article  CAS  PubMed  Google Scholar 

  11. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  12. Yu X, Hiromasa Y, Tsen H, Stoops JK, Roche TE, Zhou ZH. Structures of the human pyruvate dehydrogenase complex cores: a highly conserved catalytic center with flexible N-terminal domains. Structure. 2008;16:104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patel MS, Nemeria NS, Furey W, Jordan F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem. 2014;289:16615–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hitosugi T, Fan J, Chung TW, Lythgoe K, Wang X, Xie J, et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell. 2011;44:864–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan J, Shan C, Kang HB, Elf S, Xie J, Tucker M, et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell. 2014;53:534–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013;50:919–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han Z, Zhong L, Srivastava A, Stacpoole PW. Pyruvate dehydrogenase complex deficiency caused by ubiquitination and proteasome-mediated degradation of the E1 subunit. J Biol Chem. 2008;283:237–43.

    Article  CAS  PubMed  Google Scholar 

  18. Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell. 2014;158:84–97.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Cozar FJ, Okamura H, Aramburu JF, Shaw KT, Pelletier L, Showalter R, et al. Two-site interaction of nuclear factor of activated T cells with activated calcineurin. J Biol Chem. 1998;273:23877–83.

    Article  CAS  PubMed  Google Scholar 

  20. Mondragon A, Griffith EC, Sun L, Xiong F, Armstrong C, Liu JO. Overexpression and purification of human calcineurin alpha from Escherichia coli and assessment of catalytic functions of residues surrounding the binuclear metal center. Biochemistry. 1997;36:4934–42.

    Article  CAS  PubMed  Google Scholar 

  21. Sun L, Youn HD, Loh C, Stolow M, He W, Liu JO. Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity. 1998;8:703–11.

    Article  CAS  PubMed  Google Scholar 

  22. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteom. 2006;5:749–57.

    Article  CAS  Google Scholar 

  23. Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol. 2001;70:33–75.

    Article  CAS  PubMed  Google Scholar 

  24. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82.

    Article  CAS  PubMed  Google Scholar 

  25. McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND, et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem. 2008;283:22700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okamura H, Aramburu J, Garcia-Rodriguez C, Viola JP, Raghavan A, Tahiliani M, et al. Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol Cell. 2000;6:539–50.

    Article  CAS  PubMed  Google Scholar 

  27. Li H, Rao A, Hogan PG. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 2011;21:91–103.

    Article  CAS  PubMed  Google Scholar 

  28. Dougherty MK, Ritt DA, Zhou M, Specht SI, Monson DM, Veenstra TD, et al. KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals. Mol Cell. 2009;34:652–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duan L, Cobb MH. Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback. Proc Natl Acad Sci USA. 2010;107:22314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol. 2015;17:288–99.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maj MC, Cameron JM, Robinson BH. Pyruvate dehydrogenase phosphatase deficiency: orphan disease or an under-diagnosed condition? Mol Cell Endocrinol. 2006;249:1–9.

    Article  CAS  PubMed  Google Scholar 

  32. Chen G, Wang L, Liu S, Chuang C, Roche TE. Activated function of the pyruvate dehydrogenase phosphatase through Ca2+-facilitated binding to the inner lipoyl domain of the dihydrolipoyl acetyltransferase. J Biol Chem. 1996;271:28064–70.

    Article  CAS  PubMed  Google Scholar 

  33. Karpova T, Danchuk S, Kolobova E, Popov KM. Characterization of the isozymes of pyruvate dehydrogenase phosphatase: implications for the regulation of pyruvate dehydrogenase activity. Biochim Biophys Acta. 2003;1652:126–35.

    Article  CAS  PubMed  Google Scholar 

  34. Fan J, Kang HB, Shan C, Elf S, Lin R, Xie J, et al. Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect. J Biol Chem. 2014;289:26533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.

    Article  PubMed  Google Scholar 

  36. Li B, Simon MC. Molecular Pathways: targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin Cancer Res. 2013;19:5835–41.

    Article  CAS  PubMed  Google Scholar 

  37. Shan C, Kang HB, Elf S, Xie J, Gu TL, Aguiar M, et al. Tyr-94 phosphorylation inhibits pyruvate dehydrogenase phosphatase 1 and promotes tumor growth. J Biol Chem. 2014;289:21413–22.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Golias T, Kery M, Radenkovic S, Papandreou I. Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase. Int J Cancer. 2019;144:674–86.

    Article  CAS  PubMed  Google Scholar 

  39. Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med. 2003;348:1681–91.

    Article  PubMed  Google Scholar 

  40. Han W, Soltani K, Ming M, He YY. Deregulation of XPC and CypA by cyclosporin A: an immunosuppression-independent mechanism of skin carcinogenesis. Cancer Prev Res (Philos). 2012;5:1155–62.

    Article  CAS  Google Scholar 

  41. Datta D, Contreras AG, Basu A, Dormond O, Flynn E, Briscoe DM, et al. Calcineurin inhibitors activate the proto-oncogene Ras and promote protumorigenic signals in renal cancer cells. Cancer Res. 2009;69:8902–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Basu A, Banerjee P, Contreras AG, Flynn E, Pal S. Calcineurin inhibitor-induced and Ras-mediated overexpression of VEGF in renal cancer cells involves mTOR through the regulation of PRAS40. PLoS ONE. 2011;6:e23919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maluccio M, Sharma V, Lagman M, Vyas S, Yang H, Li B, et al. Tacrolimus enhances transforming growth factor-beta1 expression and promotes tumor progression. Transplantation. 2003;76:597–602.

    Article  CAS  PubMed  Google Scholar 

  44. Basu A, Contreras AG, Datta D, Flynn E, Zeng L, Cohen HT, et al. Overexpression of vascular endothelial growth factor and the development of post-transplantation cancer. Cancer Res. 2008;68:5689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Charni-Natan M, Goldstein I. Protocol for primary mouse hepatocyte isolation. STAR Protoc. 2020;1:100086.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation of China (No. 91957125, 81972396 to CJW, No. 31330023, 3182100, 291753207, 31930062 to SMZ; No. 81722021, 81771627, 31521003 to JYZ; No. 31671483, 31871432 to WX), Shanghai Rising-Star Program (No. 18QA1400300 to WX), National Key R&D Program of China (No. 2018YFA0800300 to SMZ; 2019YFA0801900 to JYZ; 2018YFA0801300, 2018YFC1004700 to WX); Science and Technology Municipal Commission of Shanghai, China (No. 16JC1405301 to SMZ).

Author information

Authors and Affiliations

Authors

Contributions

CJW and SMZ and conceived the study. JNZ, LZ, and JN performed the experiments. JNZ, Yao L, Yan L, JYZ, and WX analyzed and interpreted the data. SMZ and CJW wrote and revised the paper.

Corresponding authors

Correspondence to Shi-Min Zhao or Chenji Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, L., Nie, J. et al. Calcineurin inactivation inhibits pyruvate dehydrogenase complex activity and induces the Warburg effect. Oncogene 40, 6692–6702 (2021). https://doi.org/10.1038/s41388-021-02065-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02065-0

Search

Quick links