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Brain tumors actively reprogram their cellular metabolism to survive and proliferate, thus offering potential therapeutic
opportunities. Over the past decade, extensive research has been done on mutant IDH enzymes as markers of good prognosis in
glioblastoma, a highly aggressive brain tumor in adults with dismal prognosis. Yet, 95% of glioblastoma are IDH wild-type. Here, we
review current knowledge about IDH wild-type enzymes and their putative role in mechanisms driving tumor progression. After a
brief overview on tumor metabolic adaptation, we present the diverse metabolic function of IDH enzymes and their roles in
glioblastoma initiation, progression and response to treatments. Finally, we will discuss wild-type IDH targeting in primary

glioblastoma.
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INTRODUCTION

GLIOBLASTOMA (GBM) is the most common primary brain tumor
in adults, and accounts for more than 2500 cases diagnosed each
year in France. This highly malignant and rapidly progressive
glioma is distinct histologically from lower-grade tumors by
necrosis and hypoxia-induced microvascular hyperplasia. Patients
die within 4 months without therapy, while median survival of
those receiving radiotherapy with concomitant and adjuvant
temozolomide chemotherapy (Stupp protocol) is improved to
15 months [1, 2]. Still, less than 5% of patients survive over 5 years
due to invariable GBM relapse [3]. For most patients with GBM,
there is no known cause of the disease and no early detection
available. Thus, it is essential to better understand the biology of
GBM to develop treatment strategies to effectively cure them. One
avenue of research that is relatively unexplored in the field of
neuro-oncology is how metabolism is rewired in these brain
tumors.

Metabolic pathways are core mechanisms that cells use to fuel
their growth and survival. One of the major consequences of the
genetic and molecular alterations occurring in GBM is an altered
cellular metabolism, recognized in fine as a key driver of tumor
progression. Besides these distinct intrinsic alterations, extrinsic
features such as the tumor microenvironment or exposition to
treatments may also disrupt activity of several pathways, resulting
in distinct metabolic phenotypes [4]. Recent studies have revealed
remarkable metabolic heterogeneity and plasticity among GBM
but also within distinct regions of the same tumor. In particular,
we and others demonstrate that the molecular signature, tumor
sublocation in hypoxic region as well as stemness features
delineate GBM metabolic rewiring [5-8]. This metabolic hetero-
geneity would explain why cancer cells with different genetic
alterations can display similar metabolic phenotypes whereas

cancer cells with identical genetic alterations have different
metabolism. One hallmark of metabolic reprogramming is high-
lighted by enhanced aerobic glycolysis along with excess lactate
secretion, termed “the Warburg effect”. Advanced analytical
techniques through metabolomics, fluxomic isotope tracers, and
metabolic imaging show variations of other critical metabolic
circuits including glutaminolysis, one-carbon metabolism, lipid
and nucleotide synthesis, as well as reactive oxygen species (ROS)
management [9]. While the Warburg effect plays an important role
in clinical imaging for cancer through PET scan analysis by
measuring higher concentrations of radioactive glucose analog in
malignant cancers than in other tissues, this technology is not
suitable for GBM due to high background signals. Indeed, the
brain is the main consumer of glucose in the body but lacks fuel
store, and hence requires a continuously huge supply of glucose
[10]. Thus, in the particular context of GBM, development of novel
radiotracers based on amino acid or lipid metabolism would
definitively improve GBM diagnosis and follow-up, which are
currently mainly resting on common imaging methodologies such
as MRl and CT scans. Furthermore, therapeutic opportunities
might arise if we can identify specific metabolic liabilities in GBM
cells, distinct from canonical metabolic pathways supporting cell
growth of normal cells.

Recent insights in metabolomic studies have suggested a key role
of wild-type IDH enzymes upon treatment to favor GBM proliferation
and recurrence [11]. The discovery that patients with mutant IDH1/2
GBM have a better outcome compared to those with wild-type
enzymes has spurred robust research to study the consequences of
IDH mutations on cellular metabolism and to design new effective
targeted molecular therapies. Given that wild-type isoforms account
for more than 90% of all GBM, it is now time to capitalize on the
knowledge built from mutant IDH1/2 targeting to outline rationale
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Fig. 1

Metabolic properties of wild-type IDH enzymes. Depending on the isoform, the cofactor, and the localization, IDH enzymes are

involved in different cellular processes including mitochondrial energy production, glutamine metabolism, lipogenesis, epigenetic profile, cell
responses to hypoxia and cellular redox status. IDH1 performs its function in the cytosol, while IDH2 and IDH3 function as part of the
tricarboxylic acid (TCA) cycle in the mitochondria. All three IDH isoforms catalyze the oxidative decarboxylation of isocitrate to a-ketoglutarate
and carbon dioxide with the production of reducing equivalent NAD(P)H. Whereas this reaction is irreversible through IDH3 within the TCA

cycle, IDH1/2 activities are working in a reversible manner.

on wild-type IDH enzymes targeting. Here, we provide an overview
of the metabolic properties of IDH enzymes and their potential as
new therapeutic targets against GBM.

METABOLIC PROPERTIES OF IDH ENZYMES

IDH enzymes have been known for decades to catalyze the
oxidative decarboxylation of isocitrate producing alpha-
ketoglutarate (aKG) and carbon dioxide (CO,) while reducing
cofactors NAD(P)™ to NAD(P)H (Fig. 1). In all eukaryotic cell types
except mature red blood cells, three different IDH paralogs exist.
IDH1 and IDH2 are homodimeric NADP*-dependent enzymes and
mostly differed by their localization, IDH1 being cytoplasmic while
IDH2 is expressed in mitochondria. In contrast, IDH3, also
expressed in the mitochondria, uses NAD' as cofactor, forms
heterodimers or heterotetramers composed of af and ay subunits
and works in an irreversible manner. These 3 IDH isoforms have
overlapping but nonredundant roles in metabolism including, but
not limited to, mitochondrial oxidative phosphorylation, gluta-
mine metabolism, lipogenesis, glucose sensing, and regulation of
cellular redox status [12, 13] (Fig. 1).

Canonical functions of IDH enzymes

Production of aKG, a mitochondrial key metabolite with
pleiotropic activity. Mitochondrial metabolites generated
through the tricarboxylic acid (TCA) cycle are crucial for the
biosynthesis of macromolecules such as nucleotides, lipids, and
proteins. TCA cycle is mainly fueled through 2 metabolic inputs,
one from glucose-derived pyruvate and the other one from
glutamine-derived aKG through the glutamate dehydrogenase
(GDH). While aKG is produced by all 3 IDHs by the oxidative
decarboxylation of isocitrate, IDH3 is the main producer of aKG
within the TCA cycle (Fig. 1). This oxidative decarboxylation
catalyzed by IDH3 is irreversible and tightly regulated. Indeed,
IDH3 activity is allosterically regulated by substrate availability,
product inhibition, and the cell redox status to avoid unnecessary
depletion of isocitrate and accumulation of aKG [14]. Once in the
TCA cycle, aKG is further metabolized to succinate then fumarate
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through the succinate dehydrogenase and the fumarate hydra-
tase, respectively. In combination with IDH3, IDH2 regulates the
TCA cycle running through its ability to work in a reversible
manner by converting aKG back to isocitrate (Fig. 1). This cycle is
completed by the transfer of electrons from NADH to NADPH
through the nicotinamide nucleotide transhydrogenase [15]. Of
note, other enzymes, including glutamate-pyruvate transaminases
(GPT1/2) and glutamate-oxaloacetate transaminase (GOT1/2), can
also produce oKG, allowing parallel synthesis of alanine and
aspartate, respectively, that can also be used as precursors for TCA
cycle intermediates and protein synthesis.

Besides its critical role in metabolic cellular homeostasis, aKG
is also an obligatory cofactor of dioxygenase enzymes, a large
group of phylogenetically conserved enzymes including the
prolyl-hydroxylase (PHD) and multiple demethylases, which play
a key role in important processes such as responses to hypoxia
and chromatin modifications respectively. Precisely, aKG reg-
ulates PHD activity involved in the stabilization of the hypoxia-
inducible factor-1a (HIF-1a), a master regulator of oxygen
homeostasis (Fig. 1). Under limited oxygen conditions or
reduced levels of aKG, PHD activity is impaired resulting in
HIF-1a translocation to the nucleus where it regulates the
transcription of genes mainly involved in metabolism, erythro-
poiesis, and angiogenesis, as well as stem and immune cell
function [16]. Importantly, while supraphysiological concentra-
tions of TCA intermediates succinate and fumarate can inhibit
PHD under normoxia, increased intracellular aKG can reactivate
PHD in hypoxic cells resulting in metabolic catastrophe and cell
death [17]. Alpha-KG is also required for the activity of some
demethylases involved in controlling chromatin modifications
and DNA methylation including the ten-eleven translocation
(TET) DNA hydroxylases and the Jumoniji histone demethylases
(Fig. 1). Since histone and DNA methylation have a direct impact
on gene transcription, the available pool of aKG modulates cell
fate decision. For example, embryonic stem cells exhibit a high
level of intracellular aKG to promote histone and DNA
demethylation and maintain stem cell self-renewal and plur-
ipotency [18].
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Formation of reducing equivalents involved in ATP production,
lipid synthesis, and antioxidant defenses. Besides aKG produc-
tion, the oxidative decarboxylation catalyzed by the 3 IDH
isoforms leads to the formation of reducing equivalents, NAD(P)
H. IDH3 activity directly generates NADH production as well as
FADH2 by promoting TCA cycle running. These reducing
equivalents are used by the electron transport chain (ETC) to
produce ATP. In contrast, IDH1/2 leads to the formation of NADPH,
a key molecule involved in lipid synthesis and the antioxidant
machinery (Fig. 1).

Fatty acid and lipid biosynthesis reactions are major users of
NADPH. For example, the synthesis of one palmitate (16:0) from
acetyl-CoA and malonyl-CoA by fatty acid synthase requires the
input of 14 molecules of NADPH. Although the association of
NADPH production and lipogenesis is well known, direct evidence
of IDH1/2 involvement has been demonstrated only recently.
Transgenic mice overexpressing IDH1 in the liver and adipose
tissues experienced obesity and hyperlipidemia, paralleled by
increased triglyceride and cholesterol content [19]. Conversely,
in vivo IDH1 invalidation resulted in weight loss associated with
reduced fat mass and circulating triglycerides levels [20]. In the
brain, IDH1 has been shown to regulate phospholipid metabolism
in developing astrocytes [21].

Reducing equivalents supplied by NADPH also secure an
adequate pool of reduced glutathione (GSH) and thioredoxin to
protect the cell from ROS that cause DNA damage, protein
oxidation, and lipid peroxidation [22]. The role of IDH1 and IDH2
as protectors against various insults has been confirmed
extensively by several groups. Notably, Lee et al. have shown
that IDH1 or IDH2 deficiency in mouse embryonic fibroblasts leads
to increased lipid peroxidation, oxidative DNA damage, intracel-
lular peroxide generation, and decreased survival after oxidative
stress, while overexpression of either IDH1 or IDH2 prevents these
effects [23, 24].

Reductive carboxylation as a metabolic adaptation of
mitochondrial impairment

The reductive carboxylation is the reverse reaction of the oxidative
decarboxylation and can be exclusively catalyzed through IDH1
and IDH2 enzymes using glutamine-derived aKG to produce
isocitrate along with NADP+ (Fig. 1). As seen above, pools of
reducing equivalents are regulated through an isocitrate/aKG
cycle where the irreversible oxidative carboxylation catalyzed by
IDH3 is coupled to the reductive decarboxylation catalyzed
by IDH2.

Several recent publications revealed the importance of this
glutamine-dependent reductive carboxylation for de novo lipo-
genesis in cells exhibiting mitochondrial dysfunction or upon
hypoxia [5, 25, 26]. This reaction allows citrate formation, without
passing through the conventional clockwise steps of the TCA
cycle, to produce acetyl-CoA and fuel de novo fatty acid
biosynthesis, that are key membrane components and important
signal transducers. Of note, glutamine-dependent reductive
carboxylation has been previously described as a minor source
of isocitrate/citrate and lipogenic carbon in a restricted number of
normal cells from liver, heart, brown adipocytes, retinal pigment
epithelium, and quiescent fibroblasts [27-31]. While aKG/citrate
ratio is a critical determinant of glutamine-dependent reductive
carboxylation [32], this reaction is inhibited by NADP* and, to a
lesser extent, by isocitrate [33]. Thus, reductive carboxylation
retains glutamine as a crucial growth-promoting nutrient when
mitochondrial metabolism is impaired.

IDH ENZYMES AS CRUCIAL PLAYERS IN GBM

In 2008, hotspot mutation in IDH1 gene was identified in grade Il/
Il astrocytomas and oligodendrogliomas, and in secondary GBM
that developed from these lower-grade lesions [34, 35]. Secondary

Oncogene (2022) 41:613-621

G. Alzial et al.

GBM without IDH1 mutation often had mutations on the IDH2
gene. This was rapidly followed by identification of recurrent
IDH1/2 mutations in other tumor types, including acute myeloid
leukemia (AML). GBM with IDH mutations are clinically and
genetically distinct from GBM with wild-type IDH genes. In
particular, patients with mutant IDH1/2 GBM have a better
outcome compared to those with wild-type IDH tumor (14 months
with wild-type IDH vs 42 months with mutant IDH) (Fig. 2) [36].
Mutant IDH tumors are also associated with extensive epigenomic
alterations revealed by a global hypermethylation landscape (G-
CIMP phenotype). These particular characteristics prompted the
World Health Organization (WHO) in 2021 to refer mutant IDH
GBM as grade 4 mutated IDH astrocytoma, to distinguish more
clearly between this entity and wild-type IDH GBM [37]. Thus, while
IDH enzymes have been known for decades, their contribution to
GBM aggressiveness and recurrence has been barely studied until
the identification of their mutations. The emerging literature
showing how the metabolic functions of IDH enzymes impact
tumor initiation, progression, dissemination, and treatment escape
in GBM is presented below (Fig. 2).

Metabolic functions of wild-type IDH1 in GBM

Recent studies have highlighted the importance of wild-type IDH1
in GBM progression. First, Calvert et al. reported that wild-type
IDH1 is overexpressed in most primary GBM [38]. Notably, in GBM
samples specimens profiled by The Cancer Genome Atlas
Consortium, IDH1 appeared as the most differentially expressed
NADPH-producing enzyme compared to normal brain tissue
[38, 39] and exhibited a higher maximal enzymatic activity than
other NADPH-producing enzymes in patient-derived GBM samples
[40]. Through its oxidative decarboxylation activity, IDH1 promotes
tumor progression and resistance to cell death through efficient
fatty acid synthesis and ROS scavenging activities (Fig. 2) [41].
Accordingly, its genetic or pharmacological inhibition reduced
tumor growth, both in vitro and in vivo. Furthermore, and in
agreement with its ROS scavenging activity, upregulation of IDH1
expression was observed following ionizing radiation and its
silencing increased tumor sensitivity to radiation-induced senes-
cence, both in vitro and in murine xenograft models of human
GBM [39]. Finally, rescuing IDH1 metabolic activities was sufficient
to reverse this process.

The reductive carboxylation activity of wild-type IDH1 also plays
a crucial role in tumor cells located in hypoxic regions, which are
frequently found in GBM and have been associated with tumor
aggressiveness, invasion, and resistance to therapies. Upon
hypoxia, tumor cells rely almost exclusively on glutamine-
dependent reductive carboxylation catalyzed by IDH1 for lipids
synthesis while, in normoxia, lipids are preferentially synthesized
from glucose [5, 25, 42]. Accordingly, knockdown of IDH1 reduced
glutamine-dependent reductive carboxylation and impaired cell
proliferation, under hypoxia [25].

IDH1-derived aKG can also be transaminated to glutamate
through the branched-chain amino acid transaminase-1 (BCAT1).
In the brain, glutamate plays a crucial role as a neurotransmitter
and also presents clinical relevance in GBM. Indeed, several
studies have reported that increased level of glutamate promotes
both tumor progression and invasion by providing macromolecule
precursors and reducing equivalents for mitochondrial ATP
synthesis as well as increasing antioxidant production mainly
through GSH synthesis (Fig. 2) [43, 44]. Interestingly, cytoplasmic
BCAT1 has been shown to be significantly upregulated in GBM
expressing wild-type IDH1 while not being expressed in GBM
expressing mutant IDH1 implying a mechanistic link between
these two enzymes [45]. This hypothesis was reinforced by the
decreased BCAT1 expression in GBM cells upon IDH1 silencing.
Importantly, deregulation of either branched-chain amino acid
metabolism and glutamate secretion result in neuronal dysfunc-
tion and excitotoxic death [46]. Thus, blocking this metabolism
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Fig. 2 Metabolic discrepancies between wild-type and mutant IDH1 in GBM. Hotspot mutation in IDH1 gene has been identified in GBM
occuring at the active site within the catalytic pocket, and resulting in a neomorphic activity leading to the generation of (D)2-
Hydroxyglutarate (D2HG) while oxidizing NADPH. D2HG, through structural similarity to aKG, acts as a competitive inhibitor leading to
inhibition of aKG-dependent dioxygenases, and resulting to epigenetic alteration, HIF 1« stabilization, and alterations in cellular differentiation
and response to oxidative stress. Tumors with IDH1/2 mutations have distinctive genetic and clinical characteristics. In particular, patients with
mutant IDH1/2 GBM have a better outcome compared to those with wild-type IDH tumor.

should reduce tumor growth by altering tumor energy production
and macromolecules synthesis, as well as limit peritumoral
seizures experienced by GBM patients early in the disease.

Metabolic functions of wild-type IDH2 and IDH3 in GBM

Few studies have been performed to study the role of wild-type
IDH2 and IDH3 in GBM. As seen above, these two mitochondrial
isoforms act in concert to regulate TCA cycle running through an
isocitrate/aKG cycle where IDH2 mainly converts aKG and NADPH
to isocitrate and NADP™ while IDH3 converts isocitrate back to
aKG (Fig. 3). This cycle is regulated by substrate availability,
product inhibition, and cell redox status [14]. In particular, IDH2
reductive carboxylation is increased in highly glycolytic cells or
cells with dysfunctional ETC [47, 48]. In contrast, while an excess of
NAD + over NADH leads to IDH3-dependent oxidative decarbox-
ylation, an increased concentration of NADH and a shortage of
NAD + reroute aKG to glutamate through GDH This IDH2/IDH3
metabolic cycle also allows tumor cells to cope with mitochondrial
oxidative stress generated by the disruption of the respiratory
chain or induced by chemo- or radiotherapy [26, 48, 49].

Besides their combined regulation of the TCA cycle running,
each isoform also provides individual metabolic benefits to tumor
cells. Indeed, IDH2-dependent reductive carboxylation is required
for cell survival and proliferation under hypoxia or in absence of
glutamine as shown by the inability of IDH2-deficient GBM cells to
proliferate in such conditions [5]. In contrast, IDH3, through
interaction of its subunit IDH3a with the cytosolic serine
hydroxymethyltransferase (cSHMT), enhanced both nucleotide
availability and DNA methylation favoring GBM progression in
murine orthotopic GBM models [50]. Indeed, May et al. have
recently demonstrated that IDH3a, which was predominantly
expressed in mitochondria, can also be detected in the cytosol
where it binds to ¢cSHMT. This enzyme controls a rate-limited step
in one-carbon metabolism, a central metabolic pathway that uses
folate to support nucleotide synthesis, DNA and protein methyla-
tion as well as de novo thymidine and purine synthesis pathway
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(Fig. 3) [50, 51]. Importantly, they also reported that IDH3a was
overexpressed in GBM patient samples [50].

Metabolic functions of mutant IDH1/2 in GBM

IDH1/2 mutations are exclusively heterozygous and result in one
amino acid change, at residue R132 in IDH1 and R140 or R172 in
IDH2, located at the active site within the catalytic pocket. Mutant
IDH1/2 are unable to carry out wild-type IDH activities. Rather,
these mutants catalyze the NADPH-dependent reduction of aKG
to the oncometabolite (D)2-Hydroxyglutarate (D2HG) (Fig. 2)
[52, 53]. This oncometabolite is not present in normal cells but
accumulates considerably in tumors with mutant IDH. In line with
its neomorphic activity, mutant IDH1 GBM engrafted in mouse
brain display high levels of D2HG and exhibit very slow tumor
growth [54].

At the cellular level, through its structural similarity to oKG,
D2HG inhibits aKG-dependent dioxygenases leading to epigenetic
changes [55-57], HIF1a stabilization [58], and alterations in cellular
differentiation status [59]. In fact, accumulation of D2HG in tumor
cells is sufficient to establish the global hypermethylation land-
scape characteristic of mutant IDH1/2 GBM [57]. Mutation in IDH1
also triggers a bioenergetic metabolic switch in GBM cells leading
to a significant increase in oxidative mitochondrial metabolism for
the generation of ATP through both an increase in the number of
mitochondria and the utilization of glutamate and pyruvate (for
review see [60]). IDH1/2 mutation also imposes a shortage of the
reducing equivalents required to ensure antioxidant functions.
Further in vitro studies demonstrated that mutant IDH1/2 alters
the TCA metabolic fluxes leading to increased dependence on
glutaminolysis [61-63] and compromised multiple DNA repair
pathways, ultimately making tumor cells more susceptible to
radiation and chemotherapy [64-67].

Hence, both mutant and wild-type IDH enzymes may constitute
a cornerstone of tumor aggressiveness and dynamic metabolic
plasticity, in primary and secondary GBM, allowing tumor cells to
cope with multifactorial stresses.

Oncogene (2022) 41:613-621
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TARGETING OF WILD-TYPE IDH ENZYMES IN GBM

Given the dismal prognosis of GBM, new therapeutic approaches
are urgently required. Recent identification of neomorphic IDH1/2
mutations in secondary GBM has generated robust research to
elucidate their role in gliomagenesis, tumor progression and impact
on clinical outcome. Several small molecules that directly inhibit
mutant IDH1/2 activities have been developed, with some of them
currently evaluated in phase I/Il/Ill clinical studies in secondary GBM
(Table 1) (for detailed review see [68]). However, IDH-targeting
therapeutic approaches are currently restricted to mutant IDH1/2
GBM while they represent less than 10% of highly malignant glioma.
According to their involvement in a wide range of metabolic
processes, wild-type IDH-mediated metabolic reprogramming could
also be a key driver of tumor adaptation allowing GBM proliferation,
tumor escape, and recurrence. Thus, further investigations should
build on mutant IDH1/2 knowledge to propose new therapeutic
approaches targeting wild-type isoforms. Here, we will give a brief
overview of mutant IDH1/2 inhibitors and discuss wild-type IDH
targeting in primary GBM.

Lessons from IDH1/2 mutations in secondary GBM

One striking difference between wild-type IDH GBM and mutant IDH1/
2 tumors resides in their methylation landscape, which is known to
play important roles during oncogenesis [57] (Fig. 2). Thus, initial
preclinical studies used pan-methylases inhibitors such as the FDA-
approved drugs 5-azacitidine (5-aza) and decitabine. Treatment of
mutant IDH1 GBM bearing mice with either agent resulted in a
dramatic loss of stem-like properties and decreased tumor growth
[69-71]. However, their impact on the epigenomic landscape of
normal cells strongly limits their clinical applications. Furthermore,

Oncogene (2022) 41:613-621

while DNA hypermethylation elicits tumorigenesis through silencing
of tumor suppressor gene, DNA hypomethylation also contributes to
oncogenesis through induction of genomic instability and oncogene
activation. Since D2HG is sufficient to establish mutant IDH1/2 GBM
hypermethylation phenotype, several compounds that directly inhibit
mutant IDH1/2 enzymes have been developed with promising results
(Table 1). Independently of the targeted mutant isoform, most of
them reduced D2HG production in vitro and are able to penetrate the
blood-brain barrier. In orthotopic mouse models of mutant IDH1
GBM, their oral administration reduces intratumoral D2HG, reverse
histone and DNA hypermethylation, and prolong mice survival [72-
74]. Based on these preclinical evidence, several clinical trials are
currently ongoing on mutant IDH1/2 glioma, including GBM, to
evaluate the safety and efficacy of mutant IDH1 inhibitors (Ivosidenib,
BAY1436032 and IDH305), mutant IDH2 inhibitor (Enasidenib), and
pan-inhibitors inhibiting both mutant isoforms (Vorasidenib) [75-78].

Recently, innovative mutant IDH1 targeting has been published
exploiting R132H mutation as a cancer-specific epitope to design
protein-specific vaccine [79]. In preclinical syngeneic models,
peptide vaccination increased survival of mice bearing mutant
IDH1 GBM through CD8+T cell response, specific cytotoxicity, and
an antibody response [80]. A recent phase | trial was carried out in
33 patients with newly diagnosed grade 3 and 4 mutant IDH1
astrocytomas to evaluate the safety and tolerability, as well as
immune responses to the peptide vaccine (NOA-16) [81]. NOA-16
demonstrated safety and immunogenicity in 93.3% of patients
across multiple MHC alleles. These results are encouraging but the
high frequency of pseudoprogression, which was associated with
increased vaccine-induced peripheral T cell responses, need further
functional investigations using trial tissues.

SPRINGER NATURE

617



G. Alzial et al.

618

() £06£68€01ON
() ¥€9¥S¥C01DN

() 98818€TO0LON

() LZ-96£100-810C
() 118¥89€01ON

() L809%£Z0LON

(-1

(In
(
(

(Il
(]
(
(

6€/€/CCO1ON

L06¥91¥01ON
L6LEYEEOLON
7SL187C0LON

£S8686C01ON
0169S0¥01ON
L6LEYEEOLON
¥66€£0C01ON

(oseyd)
sjely jeswutd

[0s]

[s]

l6€]

[8€]

(o8]

[8€]

(g6l

[26]

[96]

[ez ezl

[8/]

[s6]

S9OUR.19j)9Y

‘pu

U
U

(Kesse 231y
-192) Wil vz

(Aesse 2314
-192) Wrl oz

WU o6l

WU 0L
‘pu

WU LL

L1MHGAl 0S21

‘pu

pu
‘pu

WU 6

WU v

WuLL

WU 0L
‘pu

Wu /=S2°0

Wuzi

InwHai 0sdl

*ANAIISUSS Suexaloylaw
‘uonejfyisw swouabids
uoneiayjoid Jowny N\ ‘sisoyjuhs
S9pPNosPNU pue , daVN/HJAVYN \
eixodAy ui uonejAxoqied

SAIPNPaJ pue uonessyijoid |3 N\

OAIA Ul uoneipeu yum
uoneulquod ul uonesdyjoid Jowny N
sjood 1uepixonue

pue aprosPnuAxosp N\

|eAIAINS Sd1W
/ ‘uopesayjoid Jowny pue SSaUWLS
N ‘I9A9] SOY pue uonenuaIayip

1192 / ‘S|9A3] D)0 pue HdAYN\

|PAIAINS DD1W
/ ‘asuodsal sunwuwi Jowny-pue /

Aoeoyye
Jojqiyul M1y / ‘[eAIAINS d1W
uonesdyjold Jowny N

|eAlAINs d1w
uonenuaiayIp
|I92 / ‘uonessyijoid swoikdonse N

OAIA Ul ymmoub sowny pue
uononpoid HH-z N\ ‘uonenuaYip
|elbosse / ‘uonejAyidw auoisiy N\
OAIA Ul

ymwoib Jowny pue uondnpoid HH-z N\

OAIA Ul uonpnpold pH-z \

sasuodsaa Jejnjj@D

‘'sawkzua HQ| 2dA3-pjim Jo uoniqiyui [esibojodewleyd pue di3pUIH

PaUIWIRIBPUN "PrU "BDUBIBBIUI YNY YBnoayy
uoniqiyui d112uab se [|am se sawkzua HQ| adA1-pjim 1sulebe palsal usaq dAeY SNIAIDE Z/LHAI Jubinw 1qiyul A|3D3J1p 1eyl S9NDSjOW [[ewS 'saWAzZUd HA| adA1-pjim 1giyul 03 pawiopiad usag anaey SaIpNIs [IDASS

s[j2> buneniui
ewol|b paAusp-1uaned

aull 19> WED 8814S uewnH

DWZ/8N jo “Cm‘_mocwx [uuNy

/(DINBELN PUB ZT/LV ‘DNL8N)
saul| ||92 gD uewnH

sXadysie> Bunenul
ewol|6 paAuap-1udEed

L9Z 1O Jo Yeib suunw
/AUIl 193 gD LIT1D Sulniy

sXAd/sl12> buneniul
ewol|b paAusp-luaed

aul| |2 DINL8N Uewiny

gD Kiepuodss

paALRp-luaied/(66ZNT)
aul| |92 ewol|b6 uewnH

aull |92 D8N Uewiny

€095 JO Yesbouax suuniy
/3Ul] [I33 NED €09SL uewnH
DINZSN JO Jeibouax suunpy
/3U]] |92 DNZ8N UewnH

€09S1 Jo
1eibouax aUUNA/(E09SL pue
D8N SaUl| |92 gD Uewny

aull |22 DNZ8N UewinH

s|opow ewol|n

LmEHAI  BUDU3YIS 65DD/HdSIYD
LwTHal YNHIS
mbHal YNYYS/IS
mlHal YNYYS

sonnadelsyl YNYYS/YNY!IS

nwlHAI auIDLA apndad
Adesayounwwi)
1 LHaI #98)SD
nwLHAI SOE-Hal
nw lHAI aole-14
mlHal
wnwlHAI ZE09€YL-AVE
mcHal
nwCHdI 08/9-19V
wuwlHAI 8615-19Y
nwCHdI (1zz-19y) qiuapispbuz
mwcHdI
/inwlHAl  (188-19Y) qIUapISDIOA
nwlHAI (0Z1-19V) qiuspison|

s103iqIyul [ed1WaYyd 1311q

jobue] sjuabe >nnadesay

‘L 9lqel

Oncogene (2022) 41:613-621

SPRINGER NATURE



Genetic and pharmacological targeting of wild-type IDHs

In agreement with the crucial role of IDH1 in anti-oxidant defenses
through NADPH production, recent studies have demonstrated that
its genetic inhibition reduces GBM growth and may significantly
improve the efficacy of conventional GBM therapies [38, 39] (Table 1).
Indeed, inactivation of IDH1 through RNA interference reduces GBM
growth and prolongs the survival of mice bearing patient-derived
xenografts. These effects were mediated through inhibition of the
oxidative decarboxylation of isocitrate to aKG resulting at the
molecular level to impaired lipid and deoxynucleotide biosynthesis
and increased ROS production, due to reduced levels of aKG and
NADPH. These molecular alterations also resulted in increased tumor
cell sensitivity to both radiation-induced senescence and erlotinib-
induced apoptosis [38, 39]. Indeed, increased ROS production
combined with reduced NADPH and deoxynucleotide pools trigger
GSH exhaustion and increase double-strand DNA breaks leading to
cell death. One study also reported that wild-type IDH1 silencing
significantly reduced the frequency of GBM stem-like cells involved in
GBM recurrence [38]. Importantly, they also demonstrated that
pharmacological inhibition of wild-type IDH1 recapitulates its genetic
silencing [38]. Indeed, GSK864, a compound initially identified as a
potent inhibitor of mutant IDH1 in AML [82], inhibits wild-type IDH1
activity, reduces GBM stem-like cell frequency and increases survival
of tumor-bearing mice. In contrast to IDH1, no significant metabolic
change was observed after IDH2 silencing by RNA interference under
normoxia [25]. These results are in agreement with a crucial role of
IDH2 in particular conditions such as hypoxia [5].

Genetic inhibition of IDH3a in orthotopic GBM mouse models also
decreases cell growth through accumulation of pyrimidine pathway
intermediates, increase of total NADPH/NADP + ratio and altered
DNA methylation profile [50]. These epigenetic alterations induced
by IDH3a deletion deregulate key pathways such as cyclic adenosine
3/, 5-monophosphate-mediated signaling and epithelial-to-
mesenchymal transition. Hence, blunted nucleotide biosynthesis,
together with epigenetic silencing of potent growth and multi-
potency factors in response to IDH3a loss of function, creates a
unique metabolic vulnerability in highly proliferative GBM cells, that
decreases cellular viability. Furthermore, IDH3a extinction coop-
erates with antifolate therapy, such as methotrexate (MTX), known
to target the thymidylate pathway enzymes DHFR and TYMS, to
promote programmed cell death [50].

Future strategies to target wild-type IDH enzymes

Published data indicate that mutant as well as wild-type enzymes, are
interesting actionable therapeutic targets. Unfortunately, whereas
mutant IDH1 inhibitors have been developed, they cannot be directly
used in wild-type IDH GBM. First, while some compounds, such as
ivosidenib, AGI-6780, and BAY-1436032, may also inhibit wild-type
IDH1 activity, required doses are usually too high to be further
evaluated in clinics (Table 1). Second, while mutant IDH enzymes
display one unique and specific neomorphic activity, wild-type IDH
enzymes catalyze several metabolic reactions involved in different
cellular processes depending on their intracellular sublocation and
microenvironment. Third, GBM being highly heterogeneous, other
factors such as their wider mutational profile, including P53, PTEN, or
EGFR, as well as their molecular signature or their anti-oxidant
profiles, may alter wild-type IDH metabolic functions [83]. Finally, a
recent computational analysis identified four stable tumor cell states
with divergent mitochondrial glucose, glutamine, and lipid metabo-
lism, in addition to specific neurodevelopmental features and
different patient outcomes [84]. In particular, the mitochondrial
subset of GBM cells relies exclusively on oxidative phosphorylation
for energy production, in contrast to glycolytic/plurimetabolic subset
sustained by activation of multiple energy-production programs
including aerobic glycolysis, amino acids, and lipid metabolism. Thus,
the identification of key wild-type IDH-mediated metabolic activity,
depending on the genetic and metabolic landscape and involved in
GBM aggressiveness, is a prerequisite for further development of
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specific wild-type IDH inhibitors in preclinical and clinical studies. The
canonical function of IDH enzymes, namely the oxidative decarbox-
ylation of isocitrate to aKG, is hardly targetable since it is displayed by
most cells, both normal and tumoral. However, the reductive
carboxylation catalyzed by IDH1 and IDH2 only occurred in
anchorage-independent tumor cells, cells with altered mitochondria,
or located in hypoxic niches [25, 42, 85]. Accordingly, glutamine-
derived reductive carboxylation was barely detected in normoxia and
was not affected by IDH1 or IDH2 silencing [25]. In contrast, IDH2-
mediated reductive carboxylation becomes critical for tumor
proliferation upon hypoxia [5]. This is of particular interest since
the most aggressive GBM cells, including GBM stem-like cells and
mesenchymal GBM cells, have been shown to reside in hypoxic
niches [86-89]. GBM stem-like cells display self-renewal ability and
long-term proliferation, potent tumor initiation ability, and radio- and
chemo-resistance [90-92]. Mesenchymal GBM cells are predomi-
nantly present in wild-type IDH GBM, are associated with poor
radiation response and worse survival [93]. Importantly, global
molecular signatures of most GBM relapses are mesenchymal [94].
Thus, targeting IDH-mediated reductive carboxylation may be a
potent way to efficiently eradicate these highly malignant cells while
sparing normal cells.

CONCLUSION

In conclusion, wild-type IDH enzymes appear as potent actionable
therapeutic target in order to improve primary GBM prognosis. A
therapeutic strategy of targeting IDH enzymes via small molecules in
combination with targeted and/or conventional therapies could
represent a Gordian knot solution and may meet more success than
solely targeting genomic alterations in a heterogeneous tumor such
as GBM. Importantly, several studies targeting wild-type IDH enhances
GBM responsiveness to treatments and provides a strong rationale to
develop IDH targeted therapies. Finally, since cancers upregulate a
variety of metabolic genes that conspire to reprogram tumor cell
metabolism, support intense growth and therapy resistance, a deep
investigation of all potential metabolic pathway inhibition in
combination, or not with other therapies, should hopefully lead to
therapeutic advances that will improve the dismal outcomes currently
seen for GBM patients.
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