Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of the wild-type KRAS allele promotes pancreatic cancer progression through functional activation of YAP1

Abstract

Human pancreatic ductal adenocarcinoma (PDAC) harboring one KRAS mutant allele often displays increasing genomic loss of the remaining wild-type (WT) allele (known as LOH at KRAS) as tumors progress to metastasis, yet the molecular ramification of this WT allelic loss is unknown. In this study, we showed that the restoration of WT KRAS expression in human PDAC cell lines with LOH at KRAS significantly attenuated the malignancy of PDAC cells both in vitro and in vivo, demonstrating a tumor-suppressive role of the WT KRAS allele. Through RNA-Seq, we identified the HIPPO signaling pathway to be positively regulated by WT KRAS in PDAC cells. In accordance with this observation, PDAC cells with LOH at KRAS exhibited increased nuclear localization and activation of transcriptional co-activator YAP1. Mechanistically, we discovered that WT KRAS expression sequestered YAP1 from the nucleus, through enhanced 14-3-3zeta interaction with phosphorylated YAP1 at S127. Consistently, expression of a constitutively-active YAP1 mutant in PDAC cells bypassed the growth inhibitory effects of WT KRAS. In patient samples, we found that the YAP1-activation genes were significantly upregulated in tumors with LOH at KRAS, and YAP1 nuclear localization predicted poor survival for PDAC patients. Collectively, our results reveal that the WT allelic loss leads to functional activation of YAP1 and enhanced tumor malignancy, which explains the selection advantage of the tumor cells with LOH at KRAS during pancreatic cancer clonal evolution and progression to metastasis, and should be taken into consideration in future therapeutic strategies targeting KRAS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Restored wild-type KRAS expression in pancreatic cancer cell lines attenuated tumor malignancies in vitro and in vivo.
Fig. 2: Induced WT KRAS expression attenuated YAP1 activation in the iWT-KRAS MIA PaCa-2 and iWT-KRAS AsPC-1 cell lines.
Fig. 3: The restoration of WT KRAS expression led to enhanced YAP1-14-3-3zeta binding and reduced YAP1-TEAD activities.
Fig. 4: The S127A mutant YAP1 reversed the tumor-suppression exerted by the wild-type KRAS allele in the iWT-KRAS-Mia-PaCa-2 cells.
Fig. 5: LOH at KRAS was positively associated with the increased expression of the YAP1-activation signature in human PDAC samples.

Similar content being viewed by others

Data availability

RNA-Seq data have been deposited in the Gene Expression Omnibus (GEO) with Accession GSE156562. Proteomics data have been uploaded to the MassIVE data repository site with the accession ID: MassIVE MSV000088107.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    PubMed  Google Scholar 

  2. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Google Scholar 

  3. Stephen AG, Esposito D, Bagni RK, McCormick F. Dragging ras back in the ring. Cancer Cell. 2014;25:272–81.

    CAS  PubMed  Google Scholar 

  4. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov. 2014;13:828–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rodriguez-Viciana P, Sabatier C, McCormick F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol Cell Biol. 2004;24:4943–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Soh J, Okumura N, Lockwood WW, Yamamoto H, Shigematsu H, Zhang W, et al. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS ONE. 2009;4:e7464.

    PubMed  PubMed Central  Google Scholar 

  7. Yu CC, Qiu W, Juang CS, Mansukhani MM, Halmos B, Su GH. Mutant allele specific imbalance in oncogenes with copy number alterations: occurrence, mechanisms, and potential clinical implications. Cancer Lett. 2017;384:86–93.

    CAS  PubMed  Google Scholar 

  8. Qiu W, Sahin F, Iacobuzio-Donahue CA, Garcia-Carracedo D, Wang WM, Kuo CY, et al. Disruption of p16 and activation of Kras in pancreas increase ductal adenocarcinoma formation and metastasis in vivo. Oncotarget. 2011;2:862–73.

    PubMed  PubMed Central  Google Scholar 

  9. Krasinskas AM, Moser AJ, Saka B, Adsay NV, Chiosea SI. KRAS mutant allele-specific imbalance is associated with worse prognosis in pancreatic cancer and progression to undifferentiated carcinoma of the pancreas. Mod Pathol. 2013;26:1346–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiosea SI, Sherer CK, Jelic T, Dacic S. KRAS mutant allele-specific imbalance in lung adenocarcinoma. Mod Pathol. 2011;24:1571–7.

    CAS  PubMed  Google Scholar 

  11. Malapelle U, Sgariglia R, De Stefano A, Bellevicine C, Vigliar E, de Biase D, et al. KRAS mutant allele-specific imbalance (MASI) assessment in routine samples of patients with metastatic colorectal cancer. J Clin Pathol. 2015;68:265–9.

    PubMed  Google Scholar 

  12. Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 2018;554:62–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Modrek B, Ge L, Pandita A, Lin E, Mohan S, Yue P, et al. Oncogenic activating mutations are associated with local copy gain. Mol Cancer Res. 2009;7:1244–52.

    CAS  PubMed  Google Scholar 

  14. Zhou B, Der CJ, Cox AD. The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol. 2016;58:60–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J, et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet. 2001;29:25–33.

    CAS  PubMed  Google Scholar 

  16. To MD, Wong CE, Karnezis AN, Del Rosario R, Di Lauro R, Balmain A. Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat Genet. 2008;40:1240–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. To MD, Rosario RD, Westcott PM, Banta KL, Balmain A. Interactions between wild-type and mutant Ras genes in lung and skin carcinogenesis. Oncogene. 2013;32:4028–33.

    CAS  PubMed  Google Scholar 

  18. Ambrogio C, Kohler J, Zhou ZW, Wang H, Paranal R, Li J, et al. KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell. 2018;172:857–68.e15.

    CAS  PubMed  Google Scholar 

  19. Staffas A, Karlsson C, Persson M, Palmqvist L, Bergo MO. Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice. Leukemia. 2015;29:1032–40.

  20. Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B, Kundu D, et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet. 2017;49:358–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McDonald OG, Li X, Saunders T, Tryggvadottir R, Mentch SJ, Warmoes MO, et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet. 2017;49:367–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    CAS  PubMed  Google Scholar 

  23. Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13:877–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147:759–72.

    CAS  PubMed  Google Scholar 

  25. Kim NG, Gumbiner BM. Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol. 2015;210:503–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013;50:1007–15.

    CAS  PubMed  Google Scholar 

  28. Tu B, Yao J, Ferri-Borgogno S, Zhao J, Chen S, Wang Q, et al. YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma. JCI Insight. 2019;4:e130811. https://doi.org/10.1172/jci.insight.13081.

    Article  PubMed Central  Google Scholar 

  29. Aguirre AJ, Hruban RH, Raphael BJ, Network CGAR. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32:185–203.e13.

    Google Scholar 

  30. Singh A, Sowjanya AP, Ramakrishna G. The wild-type Ras: road ahead. FASEB J. 2005;19:161–9.

    CAS  PubMed  Google Scholar 

  31. Matallanas D, Romano D, Al-Mulla F, O’Neill E, Al-Ali W, Crespo P, et al. Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras. Mol Cell. 2011;44:893–906.

    CAS  PubMed  Google Scholar 

  32. Romano D, Maccario H, Doherty C, Quinn NP, Kolch W, Matallanas D. The differential effects of wild-type and mutated K-Ras on MST2 signaling are determined by K-Ras activation kinetics. Mol Cell Biol. 2013;33:1859–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Young A, Lou D, McCormick F. Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov. 2013;3:112–23.

    CAS  PubMed  Google Scholar 

  34. Grabocka E, Pylayeva-Gupta Y, Jones MJ, Lubkov V, Yemanaberhan E, Taylor L, et al. Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell. 2014;25:243–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vartanian S, Bentley C, Brauer MJ, Li L, Shirasawa S, Sasazuki T, et al. Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines. J Biol Chem. 2013;288:2403–13.

    CAS  PubMed  Google Scholar 

  36. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 2006;103:12405–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun T, Chi JT. Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: the therapeutic implications. Genes Dis. 2021;8:241–9.

    CAS  PubMed  Google Scholar 

  38. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15:73–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X, et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell. 2014;158:171–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong X, Nguyen HT, Chen Q, Zhang R, Hagman Z, Voorhoeve PM, et al. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J. 2014;33:2447–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal. 2014;7:ra42.

    PubMed  PubMed Central  Google Scholar 

  42. Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell. 2014;158:185–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Salcedo Allende MT, Zeron-Medina J, Hernandez J, Macarulla T, Balsells J, Merino X, et al. Overexpression of yes associated protein 1, an independent prognostic marker in patients with pancreatic ductal adenocarcinoma, correlated with liver metastasis and poor prognosis. Pancreas. 2017;46:913–20.

    CAS  PubMed  Google Scholar 

  44. Gruber R, Panayiotou R, Nye E, Spencer-Dene B, Stamp G, Behrens AYAP1. and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK-STAT3 Signaling. Gastroenterology. 2016;151:526–39.

    CAS  PubMed  Google Scholar 

  45. Volodko N, Gordon M, Salla M, Ghazaleh HA, Baksh S. RASSF tumor suppressor gene family: biological functions and regulation. FEBS Lett. 2014;588:2671–84.

    CAS  PubMed  Google Scholar 

  46. Avruch J, Xavier R, Bardeesy N, Zhang XF, Praskova M, Zhou D, et al. Rassf family of tumor suppressor polypeptides. J Biol Chem. 2009;284:11001–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lampson BL, Pershing NL, Prinz JA, Lacsina JR, Marzluff WF, Nicchitta CV, et al. Rare codons regulate KRas oncogenesis. Curr Biol. 2013;23:70–5.

    CAS  PubMed  Google Scholar 

  48. Yan H, Qiu W, Koehne de Gonzalez AK, Wei JS, Tu M, Xi CH, et al. HHLA2 is a novel immune checkpoint protein in pancreatic ductal adenocarcinoma and predicts post-surgical survival. Cancer Lett. 2019;442:333–40.

    CAS  PubMed  Google Scholar 

  49. Hosseini P, Tremblay A, Matthews BF, Alkharouf NW. An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets. BMC Res Notes. 2010;3:183.

    PubMed  PubMed Central  Google Scholar 

  50. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    CAS  PubMed  Google Scholar 

  51. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

    PubMed  PubMed Central  Google Scholar 

  52. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 2015;43:e97. https://doi.org/10.1093/nar/gkv412.

  53. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

    Google Scholar 

  54. Hart SN, Therneau TM, Zhang YJ, Poland GA, Kocher JP. Calculating sample size estimates for RNA sequencing data. J Comput Biol. 2013;20:970–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Simon R, Radmacher MD, Dobbin K. Design of studies using DNA microarrays. Genet Epidemiol. 2002;23:21–36.

    PubMed  Google Scholar 

  56. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. R Core Team. R: A Language and Environment for Statistical Computing, 4.0.0 ed. Vienna, Austria: R Foundation for Statistical Computing; 2020.

  58. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004;20:1453–4.

    PubMed  Google Scholar 

  60. Saldanha AJ. Java Treeview-extensible visualization of microarray data. Bioinformatics. 2004;20:3246–8.

    CAS  PubMed  Google Scholar 

  61. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

    PubMed  PubMed Central  Google Scholar 

  62. Everitt BS, Landau S, Leese M, Stahl D. Cluster analysis. Wiley, 5th edition. John Wiley & Sons., Inc. 2011. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470977811.

  63. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9. https://doi.org/10.1038/75556.

  64. Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–7.

    CAS  PubMed  Google Scholar 

  65. Ahsan S, Draghici S. Identifying significantly impacted pathways and putative mechanisms with iPathwayGuide. Curr Protoc Bioinform. 2017;57:7.15.1–7.15.30.

    Google Scholar 

Download references

Acknowledgements

This study was supported by NIH/NCI R01 CA178445, NIH/NCI R01 CA217207, CUIMC Irving Drug Discovery Pilot Award (HICCC_FY21IDD01), and NIH P30CA013696 for the HICCC. HYan was supported by the China Scholarship Council for research at the CUIMC. YY was supported by the Morgan Stanley Children’s Hospital-Beijing Children’s Hospital Program. DCK was supported by the NCI-ICBP (Integrative Cancer Biology Program) Summer Research Program.

Author information

Authors and Affiliations

Authors

Contributions

HYan and CY were responsible for the designs of the experiments, the acquisition, analyses, interpretation, and presentation of the data, and drafting the paper. SAF, ALY, YY, JY, DCK, ECC, EIC, and WQ contributed to the acquisition and analyses of the data. RAF, HYing, and EIC were responsible for the computational analyses, statistical analyses, and interpretation of the data. EIC, JL, YM, and GHS provided resources and materials that were vital to the completion of the work. HYan, CY, SAF, RAF, EIC, JL, WQ, and GHS prepared and revised the paper. WQ and GHS conceived and designed the work that led to the submission. Each author has made substantial contributions to the work and/or have been involved in drafting or revising the paper. All the authors have given final approval of the version to be published and take public responsibility for appropriate portions of the content.

Corresponding author

Correspondence to Gloria H. Su.

Ethics declarations

Competing interests

Other than the grants listed in the acknowledgement section, the authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Yu, CC., Fine, S.A. et al. Loss of the wild-type KRAS allele promotes pancreatic cancer progression through functional activation of YAP1. Oncogene 40, 6759–6771 (2021). https://doi.org/10.1038/s41388-021-02040-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02040-9

This article is cited by

Search

Quick links