Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-cell analysis reveals androgen receptor regulates the ER-to-Golgi trafficking pathway with CREB3L2 to drive prostate cancer progression


Androgen receptor (AR) plays a central role in driving prostate cancer (PCa) progression. How AR promotes this process is still not completely clear. Herein, we used single-cell transcriptome analysis to reconstruct the transcriptional network of AR in PCa. Our work shows AR directly regulates a set of signature genes in the ER-to-Golgi protein vesicle-mediated transport pathway. The expression of these genes is required for maximum androgen-dependent ER-to-Golgi trafficking, cell growth, and survival. Our analyses also reveal the signature genes are associated with PCa progression and prognosis. Moreover, we find inhibition of the ER-to-Golgi transport process with a small molecule enhanced antiandrogen-mediated tumor suppression of hormone-sensitive and insensitive PCa. Finally, we demonstrate AR collaborates with CREB3L2 in mediating ER-to-Golgi trafficking in PCa. In summary, our findings uncover a critical role for dysregulation of ER-to-Golgi trafficking expression and function in PCa progression, provide detailed mechanistic insights for how AR tightly controls this process, and highlight the prospect of targeting the ER-to-Golgi pathway as a therapeutic strategy for advanced PCa.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Single-cell RNA-seq analysis of hormone-stimulated PCa cells.
Fig. 2: Androgen stimulates the reprogramming of protein processing and transport in PCa cells.
Fig. 3: Androgen induction of an ER-to-Golgi vesicle-mediated transport gene signature correlates with AR activity, progression, and recurrence-free survival in PCa patients.
Fig. 4: AR directly up-regulates the transcription of the ER-to-Golgi vesicle-mediated transport core signature genes.
Fig. 5: Androgen regulates ER-to-Golgi vesicle-mediated trafficking in PCa through up-regulating the expression of core signature genes.
Fig. 6: ER-to-Golgi vesicle-mediated transport core signature genes are necessary for PCa cell survival and proliferation.
Fig. 7: CREB3L2 collaborates with AR to directly regulate the transcription of ER-to-Golgi vesicle coating components.

Data availability

All the sequencing data from this work have been submitted to the NCBI Gene Expression Omnibus (GEO) under accession numbers GSE145845 (scRNA-seq) and GSE165562 (ChIP-seq).


  1. 1.

    Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308.

    CAS  PubMed  Google Scholar 

  2. 2.

    Mills IG. Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat Rev Cancer. 2014;14:187–98.

    CAS  PubMed  Google Scholar 

  3. 3.

    Chng KR, Cheung E. Sequencing the transcriptional network of androgen receptor in prostate cancer. Cancer Lett. 2013;340:254–60.

    CAS  PubMed  Google Scholar 

  4. 4.

    Sung YY, Cheung E. Androgen receptor co-regulatory networks in castration-resistant prostate cancer. Endocr Relat Cancer. 2014;21:R1–R11.

    CAS  PubMed  Google Scholar 

  5. 5.

    Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinog. 2011;10:20.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Feng Q, He B. Androgen receptor signaling in the development of castration-resistant prostate cancer. Front Oncol. 2019;9:858.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Linja MJ, Savinainen KJ, Saramäki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 2001;61:3550–5.

    CAS  PubMed  Google Scholar 

  8. 8.

    Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69:16–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Takeda DY, Spisak S, Seo JH, Bell C, O’Connor E, Korthauer K, et al. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell. 2018;174:422–32 e413.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wu D, Sunkel B, Chen Z, Liu X, Ye Z, Li Q, et al. Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Res. 2014;42:3607–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Fong KW, Zhao JC, Song B, Zheng B, Yu J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun. 2018;9:5007.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Parolia A, Cieslik M, Chu SC, Xiao L, Ouchi T, Zhang Y, et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature. 2019;571:413–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138:245–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30:2719–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014;33:2815–25.

    CAS  PubMed  Google Scholar 

  17. 17.

    Swinnen JV, Heemers H, van de Sande T, de Schrijver E, Brusselmans K, Heyns W, et al. Androgens, lipogenesis and prostate cancer. J Steroid Biochem Mol Biol. 2004;92:273–9.

    CAS  PubMed  Google Scholar 

  18. 18.

    Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2011;20:457–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Rokhlin OW, Taghiyev AF, Guseva NV, Glover RA, Chumakov PM, Kravchenko JE, et al. Androgen regulates apoptosis induced by TNFR family ligands via multiple signaling pathways in LNCaP. Oncogene. 2005;24:6773–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Nantermet PV, Xu J, Yu Y, Hodor P, Holder D, Adamski S, et al. Identification of genetic pathways activated by the androgen receptor during the induction of proliferation in the ventral prostate gland. J Biol Chem. 2004;279:1310–22.

    CAS  PubMed  Google Scholar 

  21. 21.

    Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK, et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell. 2017;171:321–30.e314.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174:999–1014.e1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lee JH, Tammela T, Hofree M, Choi J, Marjanovic ND, Han S, et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell. 2017;170:1149–63.e1112.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular diversity of midbrain development in mouse, human, and stem. Cells Cell. 2016;167:566–80.e519.

    PubMed  Google Scholar 

  27. 27.

    Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171:1611–24.e1624.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173:879–93.e813.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, et al. RNA-seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 2015;349:1351–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Der E, Suryawanshi H, Morozov P, Kustagi M, Goilav B, Ranabothu S, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat Immunol. 2019;20:915–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Zhu D, Zhao Z, Cui G, Chang S, Hu L, See YX, et al. Single-cell transcriptome analysis reveals estrogen signaling coordinately augments one-carbon, polyamine, and purine synthesis in breast cancer. Cell Rep. 2018;25:2285–98.e2284.

    CAS  PubMed  Google Scholar 

  33. 33.

    Guan Y, Chen X, Wu M, Zhu W, Arslan A, Takeda S, et al. The phosphatidylethanolamine biosynthesis pathway provides a new target for cancer chemotherapy. J Hepatol. 2020;72:746–60.

    CAS  PubMed  Google Scholar 

  34. 34.

    Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14:22–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:1–13.

    Google Scholar 

  36. 36.

    Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Zhao SG, Lehrer J, Chang SL, Das R, Erho N, Liu Y, et al. The immune landscape of prostate cancer and nomination of PD-L2 as a potential therapeutic target. J Natl Cancer Inst. 2019;111:301–10.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M, White J, et al. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA. 2002;99:11890–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A, et al. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006;10:321–30.

    CAS  PubMed  Google Scholar 

  41. 41.

    He Y, Lu J, Ye Z, Hao S, Wang L, Kohli M, et al. Androgen receptor splice variants bind to constitutively open chromatin and promote abiraterone-resistant growth of prostate cancer. Nucleic Acids Res. 2018;46:1895–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chng KR, Chang CW, Tan SK, Yang C, Hong SZ, Sng NY, et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J. 2012;31:2810–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Tan PY, Chang CW, Chng KR, Wansa KD, Sung WK, Cheung E. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol. 2012;32:399–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:1–10.

    Google Scholar 

  45. 45.

    Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinforma. 2010;11:1–10.

    Google Scholar 

  47. 47.

    Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31:2382–3.

    CAS  PubMed  Google Scholar 

  48. 48.

    Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27:1696–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Boncompain G, Divoux S, Gareil N, de Forges H, Lescure A, Latreche L, et al. Synchronization of secretory protein traffic in populations of cells. Nat Methods. 2012;9:493–8.

    CAS  PubMed  Google Scholar 

  52. 52.

    Dehm SM, Tindall DJ. Molecular regulation of androgen action in prostate cancer. J Cell Biochem. 2006;99:333–44.

    CAS  PubMed  Google Scholar 

  53. 53.

    Gao S, Gao Y, He HH, Han D, Han W, Avery A, et al. Androgen receptor tumor suppressor function is mediated by recruitment of retinoblastoma protein. Cell Rep. 2016;17:966–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Gonthier K, Poluri RTK, Audet-Walsh E. Functional genomic studies reveal the androgen receptor as a master regulator of cellular energy metabolism in prostate cancer. J Steroid Biochem Mol Biol. 2019;191:105367.

    CAS  PubMed  Google Scholar 

  55. 55.

    Blessing AM, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, et al. Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy. 2017;13:506–21.

    CAS  PubMed  Google Scholar 

  56. 56.

    Sheng X, Arnoldussen YJ, Storm M, Tesikova M, Nenseth HZ, Zhao S, et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med. 2015;7:788–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sheng X, Nenseth HZ, Qu S, Kuzu OF, Frahnow T, Simon L, et al. IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat Commun. 2019;10:323.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Niu T-K, Pfeifer AC, Lippincott-Schwartz J, Jackson CL. Dynamics of GBF1, a brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol Biol Cell. 2005;16:1213–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Ishikawa T, Toyama T, Nakamura Y, Tamada K, Shimizu H, Ninagawa S, et al. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner. J Cell Biol. 2017;216:1761–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Saito A, Hino S, Murakami T, Kanemoto S, Kondo S, Saitoh M, et al. Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat Cell Biol. 2009;11:1197–204.

    CAS  PubMed  Google Scholar 

  61. 61.

    Tomoishi S, Fukushima S, Shinohara K, Katada T, Saito K. CREB3L2-mediated expression of Sec23A/Sec24D is involved in hepatic stellate cell activation through ER–Golgi transport. Sci Rep. 2017;7:7992.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Cho U, Kim H-M, Park HS, Kwon O-J, Lee A, Jeong S-W. Nuclear expression of GS28 protein: a novel biomarker that predicts worse prognosis in cervical cancers. PLoS ONE. 2016;11:e0162623.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Jeong YT, Simoneschi D, Keegan S, Melville D, Adler NS, Saraf A, et al. The ULK1-FBXW5-SEC23B nexus controls autophagy. eLife. 2018;7:e42253.

  64. 64.

    Howley BV, Link LA, Grelet S, El-Sabban M, Howe PH. A CREB3-regulated ER-Golgi trafficking signature promotes metastatic progression in breast cancer. Oncogene. 2018;37:1308–25.

    CAS  PubMed  Google Scholar 

  65. 65.

    Jensen D, Schekman R. COPII-mediated vesicle formation at a glance. J Cell Sci. 2011;124:1–4.

    CAS  PubMed  Google Scholar 

  66. 66.

    Gomez-Navarro N, Miller EA. COP-coated vesicles. Curr Biol. 2016;26:R54–R57.

    CAS  PubMed  Google Scholar 

  67. 67.

    Arakel EC, Schwappach B. Formation of COPI-coated vesicles at a glance. J Cell Sci. 2018;131:jcs209890.

  68. 68.

    Sampieri L, Di Giusto P, Alvarez C. CREB3 transcription factors: ER-Golgi stress transducers as hubs for cellular homeostasis. Front Cell Dev Biol. 2019;7:123.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Sztul E, Lupashin V. Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett. 2009;583:3770–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Reck-Peterson SL, Redwine WB, Vale RD, Carter AP. The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol. 2018;19:382–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009;10:682–96.

    CAS  PubMed  Google Scholar 

  72. 72.

    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Transport from the ER through the Golgi apparatus. Molecular biology of the cell. 4th ed. Garland Science; 2002.

  73. 73.

    Scharaw S, Iskar M, Ori A, Boncompain G, Laketa V, Poser I, et al. The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR. J Cell Biol. 2016;215:543–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Jing J, Wang B, Liu P. The functional role of SEC23 in vesicle transportation, autophagy and cancer. Int J Biol Sci. 2019;15:2419–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Davis JE, Xie X, Guo J, Huang W, Chu W-M, Huang S, et al. ARF1 promotes prostate tumorigenesis via targeting oncogenic MAPK signaling. Oncotarget. 2016;7:39834.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Iwamoto H, Matsuhisa K, Saito A, Kanemoto S, Asada R, Hino K, et al. Promotion of cancer cell proliferation by cleaved and secreted luminal domains of ER stress transducer BBF2H7. PLoS One. 2015;10:e0125982.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Zhang Z, Xie H, Zhu S, Chen X, Yu J, Shen T, et al. High expression of KIF22/Kinesin-like DNA binding protein (Kid) as a poor prognostic factor in prostate cancer patients. Med Sci Monit. 2018;24:8190–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Mordente JA, Konno S, Chen Y, Wu JM, Tazaki H, Mallouh C. The effects of brefeldin A (BFA) on cell cycle progression involving the modulation of the retinoblastoma protein (pRB) in PC-3 prostate cancer cells. J Urol. 1998;159:275–9.

    CAS  PubMed  Google Scholar 

  79. 79.

    Chapman J, Tazaki H, Mallouh C, Konno S. Brefeldin A-induced apoptosis in prostatic cancer DU-145 cells: a possible p53-independent death pathway. BJU Int. 1999;83:703–8.

    CAS  PubMed  Google Scholar 

  80. 80.

    Rajamahanty S, Alonzo C, Aynehchi S, Choudhury M, Konno S. Growth inhibition of androgen-responsive prostate cancer cells with Brefeldin A targeting cell cycle and androgen receptor. J Biomed Sci. 2010;17:1–8.

    Google Scholar 

  81. 81.

    Paek S-M. Recent synthesis and discovery of brefeldin a analogs. Mar Drugs. 2018;16:133.

    PubMed Central  Google Scholar 

  82. 82.

    Kim TH, Park JM, Kim MY, Ahn YH. The role of CREB3L4 in the proliferation of prostate cancer cells. Sci Rep. 2017;7:45300.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Bannykh SI, Rowe T, Balch WE. The organization of endoplasmic reticulum export complexes. J Cell Biol. 1996;135:19–35.

    CAS  PubMed  Google Scholar 

  84. 84.

    Amaravadi RK, Lippincott-Schwartz J, Yin X-M, Weiss WA, Takebe N, Timmer W, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res. 2011;17:654–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Mediavilla-Varela M, Pacheco FJ, Almaguel F, Perez J, Sahakian E, Daniels TR, et al. Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol Cancer. 2009;8:1–15.

    Google Scholar 

  86. 86.

    Zhang J, Wang J, Wong YK, Sun X, Chen Y, Wang L, et al. Docetaxel enhances lysosomal function through TFEB activation. Cell Death Dis. 2018;9:1–10.

    Google Scholar 

  87. 87.

    Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002;99:12293–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Cha J-H, Yang W-H, Xia W, Wei Y, Chan L-C, Lim S-O, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol cell. 2018;71:606–20.e607.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Webber MM, Waghray A, Bello D. Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clin Cancer Res. 1995;1:1089–94.

    CAS  PubMed  Google Scholar 

  90. 90.

    Nauseef JT, Henry MD. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol. 2011;8:428.

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    David JM, Dominguez C, Hamilton DH, Palena C. The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines. 2016;4:22.

    PubMed Central  Google Scholar 

  92. 92.

    Kitagawa Y, Dai J, Zhang J, Keller JM, Nor J, Yao Z, et al. Vascular endothelial growth factor contributes to prostate cancer–mediated osteoblastic activity. Cancer Res. 2005;65:10921–9.

    CAS  PubMed  Google Scholar 

  93. 93.

    Wise GJ, Marella VK, Talluri G, Shirazian D. Cytokine variations in patients with hormone treated prostate cancer. J Urol. 2000;164:722–5.

    CAS  PubMed  Google Scholar 

Download references


We would like to thank Guimei Cui and Mi Chen for their help with the ChIP assay. We would also like to acknowledge the Animal Research Core, Bioimaging and Stem Cell Core, and Genomics, Bioinformatics & Single Cell Analysis Core at FHS. This work was performed in part at the High-Performance Computing Cluster (HPCC), which is supported by the Information and Communication Technology Office (ICTO) of the University of Macau. We thank Jacky Chan Hoi Kei and William Pang from HPCC for their support and help.


We are grateful for financial support from the National Science Foundation of China (Grant No. 62003094) to X.C., the University of Macau (MYRG2018-00033-FHS and MYRG2020-00100-FHS) and the Macau Science and Technology Development Fund (102/2015/A3, 0137/2020/A3, and 0011/2019/AKP) to E.C.

Author information




L.H. and E.C. conceived and designed the project; X.C., N.N., C.T., P.G., and Z.Z. conducted bioinformatics analysis with guidance from W.K.S. and E.C.; L.H., M.G.L.L., Z.C., U.I.C., and M.D. performed experiments under the supervision of X.X., W.K.S., and E.C.; L.H. and E.C. drafted the manuscript with inputs from all the authors.

Corresponding authors

Correspondence to Wing-Kin Sung or Edwin Cheung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Chen, X., Narwade, N. et al. Single-cell analysis reveals androgen receptor regulates the ER-to-Golgi trafficking pathway with CREB3L2 to drive prostate cancer progression. Oncogene 40, 6479–6493 (2021).

Download citation


Quick links