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Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and
maturation of B-cells. Finely tuned transient Ca+2

fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or
chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute
to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation.
Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to
apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for
the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated
mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling
pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key
components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the
pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.
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MATURE B-CELL DIFFERENTIATION
Around 90% of all B-cell neoplasms are derived from mature B
cells [1], i.e., cells that have undergone rearrangement of their
immunoglobulin (Ig) heavy chain and light chain genes in the
bone marrow, express surface B-cell receptor (BCR) and have been
selected against autoreactivity. The mature B-cells that emerge
from the bone marrow are known as naive B cells. These cells co-
express the BCR as IgM and IgD molecules and will become
activated if their BCR recognises its cognate antigen. Thereafter,
the antigen-activated B cells migrate into B cell follicles and
establish a germinal centre (GC). In the GC, the B-cells proliferate
and activate several key processes that include somatic hypermu-
tation (SHM), which introduces mutations in the Ig heavy and light
chain variable region genes to improve the affinity of the BCR, and
class switch recombination (CSR) in which the isotype of the Ig
heavy chain is changed to either IgG, IgA, or IgE [2]. Only a fraction
of antigen-specific B cells survive the GC reaction and emerge as
either plasma cells or memory B cells. Most B-cell lymphomas arise
from cells that have been through a GC reaction, reflecting the
increased risk of mutation in cells undergoing SHM and CSR.

ACTIVATION OF CA2+-DEPENDENT SIGNALLING PATHWAYS IN
B CELLS
Changes in the intracellular calcium concentration in B cells are
tightly controlled by coordinated signals initiated by cell-surface
receptors (e.g., BCR, chemokine receptors) and by various calcium
channels and antiporters.
Signalling via the BCR. Initiation of calcium-dependent signalling

has best been characterised in the context of BCR activation. The

binding of antigen to the BCR results in activation of the
associated cytoplasmic tyrosine kinases (Syk and Btk), that, in
turn, phosphorylate and activate phospholipase C gamma 2
(PLCγ2). PLCγ2 generates inositol trisphosphate (IP3) that binds to
the IP3 receptors (IP3R) and induces the first wave of Ca2+ influx
to the cytoplasm from the endoplasmic reticulum (ER). Calcium
depletion from the ER stores is sensed by the ER-associated
stromal interaction molecule 1 (STIM1), that is translocated to the
junction between the ER and plasma membrane and activates
calcium release‐activated channels (CRAC) - Orai1/2. This leads to
the second wave of calcium influx to the cytoplasm and
subsequent repletion of the ER stores. Several cell surface
molecules control the BCR-induced calcium signalling in B cells
[3]. For example, activation of Btk, an upstream regulator of PLCγ2,
is also controlled by CD19-associated phosphatidylinositol-tris-
kinase (PI3K), that facilitates the recruitment of Btk to the plasma
membrane [4]. By contrast, BCR-induced phosphorylation of
inhibitory Fc-receptors (FcγRIIB) and CD22, a member of the
Siglec family of sialic acid receptors, recruit SHP-1 tyrosine
phosphatase, that negatively regulates the upstream activators
of PLCγ2 [5].
Signalling via GPCRs. Several chemokines and bioactive lipids,

acting through G-protein-coupled receptors (GPCRs), control calcium
waves in B cells [6]. Activation of GPCRs can either feed into BCR-
induced Ca2+ fluxes via the Btk-PLCγ2 signalling axis [7] or via G-
protein-associated PLCβs [8]. GPCRs can also act directly on the IP3R
by activating cyclic AMP-dependent protein kinase A [9].
Calcium channels in signalling. In addition to CRAC-Orai-STIM

complexes, B cells express non-store-operated calcium channels
[10]. While their role in Ca2+-dependent signalling pathways and
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in the differentiation of mammalian B-cells remains largely
unknown, experiments involving the avian B-cell line (DT40)
demonstrated that TRPC3 and TRPC7, two diacylglycerol-activated
TRP channels, may contribute to BCR-induced influx of extra-
cellular calcium [11].

ORIGIN OF MATURE B-CELL LYMPHOMAS
The classification of the mature B-cell lymphomas into distinct
entities is partly based on similarity to their normal B-cell
counterparts and assumes that the malignant cells retain many
characteristics of the normal cells. For example, Burkitt lymphoma
(BL) expresses markers that are characteristic of normal germinal
centre B-cells (e.g., BCL6 and CD10) [12]. Chronic lymphocytic
leukaemia and small lymphocytic lymphoma (CLL/SLL) are
characterized by the clonal expansion of CD5+ B cells. In many
cases, the transformed cells remain dependent on the expression
of a functional BCR; such tumours include BL, diffuse large B-cell
lymphoma (DLBCL), mantle-cell lymphoma (MCL), CLL/SLL and
marginal zone lymphoma (MZL). In some cases, there is evidence
of aberrant BCR signalling driven in part by genetic alterations. For
example, the two major ‘cell of origin’ subtypes of DLBCL, known
as the activated B-cell (ABC) and germinal centre B-cell (GCB)
forms, show strikingly different mechanisms of aberrant B-cell
receptor (BCR) activation. In ABC-DLBCL, so-called chronic active
BCR signalling activates both the nuclear factor-κB (NF-κB) and
PI3K/AKT pathways [13]. This is a consequence of BCR cross-linking
induced by self-antigens expressed on the same or adjacent cells,
combined with sustained signalling resulting from pathway
mutations, for example in CD79B [14]. In contrast, only the PI3K/
AKT pathway is activated downstream of the BCR in GCB-DLBCL
and signalling is antigen-independent and referred to as ‘tonic’
[15, 16]. The degree of mutation of the genes encoding the
immunoglobulin heavy chain clonotype of the BCR is among the
most robust prognostic tools for CLL/SLL, dividing patients with
‘unmutated’ CLL (U-CLL) as having more aggressive disease
outcomes, or so-called ‘mutated’ CLL (M-CLL) as having more
indolent disease course [17]. On the other hand, some mature
B-cell lymphomas, for example, classical Hodgkin lymphoma (cHL)
and primary mediastinal B cell lymphoma (PMBCL), are char-
acterised by the loss of BCR functions. This can be a consequence
of either so called ‘crippling’ mutations in the immunoglobulin-
coding genes, epigenetic silencing of key BCR components or
their transcriptional down-regulation, for example, by the Epstein-
Barr virus (EBV)-encoded latent membrane proteins- 1 and 2 A
[18–20].
While in BCR-expressing lymphomas receptor crosslinking is

likely to provide the most powerful and sustained signal leading
to activation of Ca2+-dependent pathways, engagement of several
other surface receptors also feeds into calcium haemostasis. Lectin
binding to DC-SIGN induces persistent activation of PLCγ2 in
follicular lymphoma cells [21]. Activation of CXCR4 in DLBCL cells
induces both transient (PLC-dependent) and sustained (STIM-
ORAI-1-dependent) calcium influx [22]. Binding of Wnt5 to its
Frizzled-5 receptor-induced Ca2+-dependent activation of NFAT
and NF-κB in BL cells [23]. In BCR-independent lymphomas,
calcium homeostasis is regulated by a number of other surface
receptors. For example, ligation of the CD30 receptor expressed
on malignant cells induces Ca2+ influx in cHL [24]. Similarly,
stimulation of cysteinyl leukotrienes receptors (CysLTR1) induces
strong calcium signalling in the malignant cells of both cHL and
PMBCL [25, 26].

CALCIUM-BINDING ENZYMES IN B-CELL LYMPHOMAS
There are hundreds of calcium-binding proteins in cells whose
activity could be affected by induced Ca2+ waves in B cells.
Genetic profiling of B cell lymphomas has identified that a

significant proportion of mutations occur in genes with functions
in calcium-dependent signalling (Fig. 1, Table 1). Importantly,
some of the reported mutations have been shown to enhance
calcium-dependent homeostasis in model lymphoma cell lines
[27, 28]. Here, we will only discuss Ca2+-dependent enzymes with
established links to B-cell lymphomagenesis.

PROTEIN KINASE C (PKC) ENZYMES
The family of PKC is composed of 9 isoforms including a subgroup
of Ca2+-dependent enzymes: PKCα, PKCβI/II, and PKCγ. While PKCγ
is not expressed in B-cells, both PKCα and PKCβ have been shown
to play important roles in B-cell differentiation [29]. Although the
proliferation of B cells was not affected in PKCα-deficient mice,
there was diminished antigen-specific IgM to IgG2a and IgG2b
switch in these animals [30]. Experiments involving
PKCβ-knockout and PKCβ-transgenic animals have revealed a
signalling link between BCR-dependent activation of Btk and PKCβ
[31–33]. An early study using PKCβ-knockout mice demonstrated
that although BCR-induced signalling is suppressed in these

Fig. 1 Major Ca2+-dependent pathways that could be affected by
genes mutated in B-cell lymphomas (Table 1). Activation of surface
BCR complex (i.e., membrane immunoglobulin (mIg) associated with
covalently linked CD79a-CD79b heterodimer) and other surface
receptors (e.g., TLRs, CXCR4, and FAS) by their ligands results in PLC-
dependent hydrolysis of phosphatidylinositol bisphosphate (PIP2)
and generation of inositol triphosphate (IP3). PLCs are activated
either by Syk and Btk tyrosine kinases which induced tyrosine
phosphorylation of the protein (e.g., PLCγ2) or via binding to Gβγ
subunits of trimeric GTP-binding proteins (PLCβ) that are coupled to
cell surface receptors (CXCR4, FZD3, P2RY8, and S1PR2). IP3-bound
receptors (IP3Rs) on the endoplasmic reticulum (ER) induce release
Ca2+ from the ER leading to activation of various cytoplasmic
enzymes (Fig. 2). CD22 forms a tripartite complex with protein
tyrosine phosphatase non-receptor type-6 (Shp-1) and plasma
membrane Ca2+‐ATPase (PMCA) that regulates Ca2+ efflux pathway.
Kelch-like protein 6 (KLHL6) functions as an adaptor for Cullin-3
(CUL3), an E3 ubiquitin ligase that regulates internalisation (and
possibly degradation) of CD22 thus negatively affecting the
contribution of the protein to calcium homeostasis. Phosphoinosi-
tide 3-kinases (PI3Ks, p85/p100) and Phosphatidylinositol 3,4,5-
trisphosphate 3-phosphatase (PTEN) control interconversion of PIP2
and phosphatidylinositol trisphosphate (PIP3) on the plasma
membrane. Binding to PIP3 enhances enzymatic activity of Btk
resulting in increased Btk-dependent phosphorylation of PLCγ.
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animals, PKCβ also functions as a Btk-inhibitor in a negative
feedback mechanism [33]. Specifically, PKCβ-induced phosphor-
ylation of Btk inhibited the recruitment of the enzyme to the
plasma membrane and its subsequent activation. Further experi-
ments using cells from PKCβ-deficient mice demonstrated that
PKCβ regulates the BCR-dependent metabolic switch to glycolysis
in naive B-cells [34]. In addition, PKCβ is involved in the BCR-
induced activation of NF-κB by phosphorylating CARMA1/CARD11,
an important component of the CARMA1/Bcl10/Malt1 (CBM)
complex, which functions as an upstream activator of the NF-κB
pathway [35]. Finally, PKCβ isoforms acting downstream of BCR
and Orai1 suppress the apoptotic signalling pathway by stimulat-
ing the expression of Bcl-2 and Bcl-xL on the one hand [36, 37],
and inhibiting the assembly of the death-inducing signalling
complex on the other [38].
Earlier reports demonstrated that high expression of PKCβ was

associated with poor survival of DLBCL patients [39–41]. In
addition, recurrent mutations in PRKCB (gene encoding PKCβ)
has been observed in follicular lymphomаs [42]. Given its role in
different BCR-induced signalling pathways, it is not surprising that
knockdown and pharmacological inhibition of PKCβ suppresses
chronic BCR-signalling in the ABC-subtype of DLBCL [43] and cell
proliferation [37].

CALPAINS
Calpains belong to a family of intracellular Ca+2-dependent
cysteine proteases that are implicated in a variety of vital
biological processes [44]. Activation of calpains downstream of
BCR has been linked to B-cell clonal deletion and establishing the
B-cell repertoire [45]. The role of calpains in the pathogenesis of
B-cell lymphomas has not been systematically investigated.
Studies involving two BL cell lines demonstrated that a calpain
inhibitor II (CPI-2) triggers rapid apoptosis [46]. Conversely, BCR
activation in WEHI-231 cells, a murine B-cell lymphoma line,
induced calpain-dependent cleavage of Caspase-7 leading to
apoptosis [47]. In another study, inhibition of calpains decreased
the activity of NF-κB1 (p50) homodimers leading to down-
regulation of the expression of Bcl-2, one of the key anti-

apoptotic proteins [48]. On the other hand, calpain-dependent
cleavage of Bax, a pro-apoptotic member of the Bcl-2 family, may
represent a critical initiation step in arsenic sulfide-induced
apoptosis of human DLBCL cell lines [49]. In addition to the
apoptosis-related signalling network, calpains have been impli-
cated in proteolytic cleavage of Myc thus generating Myc-nick, a
truncated protein lacking the C-terminal portion of c-Myc [50].
Myc-nick, that is present in precancerous bone marrow-derived
pre-B cells along with full-length Myc in the Eμ−myc mouse
model of Myc-driven lymphoma [51], was shown to bind
microtubules and recruits acetyltransferases to promote α-tubulin
acetylation and microtubule stabilization [50]. Finally, calpains
were shown to act on Btk [52] and IP3R3 [53], important
components of the BCR-dependent signalling network.

CALCINEURIN
Calcineurin (CaN) is a ubiquitously expressed serine/threonine
phosphatase that is activated by calcium and calmodulin, an
abundant calcium-sensing cytoplasmic protein [54] (see below).
BCR-induced transient release of calcium from internal stores, and
sustained influx of extracellular calcium were shown to activate
CaN [55]. Early experiments using EBV-positive and EBV-negative
lymphoma cell lines suggested that CaN is involved in BCR-
induced apoptosis involving activation of caspases-2 and -3 [56].
Subsequent studies demonstrated that in BL cell lines, BCR-
induced rapid activation of CaN resulted in the nuclear transloca-
tion of NFATc2, a member of the family of nuclear factor of
activated T-cells (NFAT) transcription factors, followed by the
increased expression of pro‐apoptotic molecule TR3/Nur77 and
initiation of the apoptotic programme [57]. The importance of the
CaN-NFAT signalling axis in lymphomagenesis is also supported
by the observation that CaN-dependent nuclear localisation of
NFATc1 was seen in ~70% of BL and ~30% of DLBCL [58].
Although not investigated in B-cell lymphomas, some other CaN
substrates have been linked to lymphomagenesis. Increased
accumulation of the transcription factor FOXO3 in the nucleus
facilitates apoptosis of DLBCL cells treated with ibrutinib, a specific
Btk inhibitor [59]. Importantly, an earlier study demonstrated that

Table 1. Frequencies of mutations in genes involved in Ca2+-dependent signalling in B-cell lymphomas.

GENE Protein CLL/SLL DLBCL MCL FL BL MZCL cHL

BTK BTK, Bruton Tyrosine Kinase 4.0 1.6 4.2 1.2 – 1.0 –

CD79A B-Cell Antigen Receptor Complex-Associated Protein alpha Chain 0.2 2.8 – 1.2 – 0.5 4.8

CD79B B-Cell Antigen Receptor Complex-Associated Protein beta Chain 0.3 9.6 – 1.4 4.7 1.8 1.3

CXCR4 C-X-C Motif Chemokine Receptor 4 1.4 2.3 – 2.2 9.7 3.5 –

FAS Fas Cell Surface Death Receptor 0.4 6.2 4.9 12.5 – 22.8 1.3

S1PR2 S1PR2, Sphingosine-1-Phosphate Receptor 2 0.7 4.0 – – 8.8 – –

PLCG2 PLCγ2, Phospholipase gamma 2 2.0 0.8 3.8 – 12.9 1.1 –

ITPR2 Inositol 1,4,5-Trisphosphate Receptor Type 2 2.8 2.2 9.1 3.6 0.5 – 3.8

ITPR3 Inositol 1,4,5-Trisphosphate Receptor Type 3 0.5 1.4 – 3.6 – – 3.8

ITPKB Inositol-Trisphosphate 3-Kinase B 1.7 5.4 2.4 1.8 – – 13.9

FZD3 FZD3, Frizzled Class Receptor 3 0.6 0.3 – 1.8 9.3 4.0 –

P2RY8 Purinergic Receptor P2Y8 0.2 2.3 – 5.1 1.5 – –

GNAI2 G Protein Subunit Alpha I2 0.1 0.6 – 5.5 13.9 4.0 –

KLHL6 Kelch Like Family Member 6 2.5 5.4 – – 1.0 1.1 –

PTEN PTEN, phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase 0.6 2.9 3.7 2.0 9.7 1.5 –

PIK3R1 p85A, Phosphoinositide-3-Kinase Regulatory Subunit 1 0.5 1.5 – 1.2 9.3 1.0 4.5

BCL2 B-Cell Lymphoma 2 2.9 18.8 1.9 36.5 0.5 3.5 –

MYD88 MYD88 Innate Immune Signal Transduction Adaptor 2.7 17.8 – – 1.2 6.6 –

Data for the mutations were obtained from the catalogue of somatic mutations in cancer (COSMIC) database (cancer.sanger.ac.uk/cosmic).
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dephosphorylation of FOXO3 in cells expressing high levels of CaN
is accompanied by the nuclear translocation of FOXO3 [60].
Transcription factor EB (TFEB) has been identified in a genome-
wide CRISPR screen for genes regulating apilimod-induced
cytotoxicity in B-cell non-Hodgkin lymphomas [61]. Apilimod, an
antiproliferative compound specifically targeting PIKfyve lipid
kinase, induces rapid dephosphorylation of TFEB and protein
translocation to the nucleus. While the underlying molecular
pathways have not been illustrated in this report, TFEB has been
described as a CaN substrate in other cell types [54].

CALCIUM/CALMODULIN KINASES
Ca2+ /calmodulin (CaM)-dependent protein kinases are activated
after they interact with calcium-bound calmodulin (Fig. 2). Whilst
several CaM kinases are expressed in normal B cells (https://www.
proteinatlas.org/), their role in normal B-cell differentiation
remains completely unknown. Reduced mRNA expression of
death-associated kinase 1 (DAPK1) due to promoter hypermethy-
lation was observed in DLBCL, FL and cHL [62, 63]. Furthermore,
hypermethylation of the DAPK1 promoter is associated with more
aggressive disease and poor outcome in CLL/SLL, DLBCL and FL
[64–66]. Experiments involving model B-cell lymphoma cell lines
demonstrated CaMKK2-dependent phosphorylation of AMPK may
contribute to the induction of autophagy and apoptosis [67]. On
the other hand, B-cell activating factor (BAFF) – induced
proliferation and survival of normal B cells and BL cell line
involved CaMKII-dependent phosphorylation of Akt and activation
of the mTOR signalling pathway [68].

THE EPSTEIN-BARR VIRUS AND CA2+ SIGNALLING
EBV, a gamma human herpesvirus, is an aetiological agent in the
pathogenesis of a number of cancers of B-cell origin [69]. In
latently infected B cells, the EBV genome can express distinct
latency programs [70–72]. The latency III program or the ‘growth
program’ consisting of six EBV nuclear antigens (EBNA−1, −2,
−3A, −3B, −3C, and −LP) and three latent membrane proteins
(LMP−1, −2A, and −2B), is expressed in newly infected B cells,
and in most cases of EBV-positive DLBCL [73]. Latency II or the
‘default program’ consisting of EBNA1, LMP1, LMP2A, and LMP2B,
is expressed in EBV-infected germinal centre B cells and II is
expressed in all cases of EBV-positive cHL [74–76]. Latency I, in
which protein expression is limited to only one protein, EBNA1, is
characteristic of dividing EBV-infected memory B cells and most
cases of EBV-positive BL [70, 71]. Latently infected B cells can also
enter the ‘lytic cycle’ which ultimately leads to the production of
new virions and cell death.

THE LATENT MEMBRANE PROTEINS OF EBV ARE MAJOR
MODULATORS OF CALCIUM-REGULATED SIGNALLING
PATHWAYS IN EBV-INFECTED CELLS
The latent membrane proteins, LMP1 and LMP2A, are expressed in
the latency III and latency II programmes, and play a crucial role in
calcium-regulated signalling pathways in EBV-infected cells. In
turn, calcium signalling has profound effects on EBV life cycle,
favouring virus persistence and oncogenesis.
LMP1 is a constitutively active CD40 homologue that can

activate a number of signalling pathways, including NF-κB, JAK/
STAT, AP-1, and PI3K/AKT signalling [77–79]. LMP1 expression in
Latency II is thought to provide the CD40-like signals required to
enable EBV-infected B cells to survive a germinal centre reaction
and to subsequently differentiate into plasma cells or memory B
cells [80]. LMP1 has been shown to induce many of the features of
the aberrant transcriptional programme characteristic of the
tumour cells of cHL, including the down-regulation of BCR
signalling components, and the increased expression of anti-
apoptotic genes such as BCL2 and BFL-1 [20, 81]. It has been
reported that the CaM-dependent protein kinase II (CaMKII), that is
activated by LMP1, is crucial for the ability of LMP1 to induce NF-
κB signalling [82]. CaMKII interacts with interleukin-1 receptor
kinase (IRAK1) and this is required for LMP1 induced CaMKII
activation. CaMKII directly phosphorylates p65/RelA leading to
p65/p50 or p65/p52 mediated transactivation [82]. LMP1 has been
shown to increase calcium flux in B cells [83] and it is suggested
that LMP1 might activate CaMKII by modulating calcium flux [82].
Specifically, EBV infection of BL cell lines was shown to increase
expression of the high Ca2+ affinity SERCA2, and decrease
expression of the low Ca2+ affinity, SERCA3, resulting in an
increase in the amount of Ca2+ in the lumen of the ER [84]. LMP1
was shown to be responsible for the decrease in SERCA3
expression [83]. LMP1 also activates CaMKIV expression in B cells
[84]. Both NFATc1 and NFATc2 induce lytic EBV gene expression
when combined with activated CaMKIV [85]. The increased activity
of NFAT transcription factors is reported to account for the
increased viral lytic cycle activity in B-cells infected with Type 2,
compared with Type 1, EBV [85]. In keeping with a crucial role for
calcium signalling in regulating the viral lytic cycle, calcineurin
inhibitors have been shown to block EBV entry to the lytic cycle
following BCR stimulation [86]. LMP2A mimics some of the
functions of BCR signalling, for example, by activating ERK/MAPK
and PI-3K pathways which is likely to be important for the survival
of infected germinal centre B cells [87–89]. At the same time, it
was shown that LMP2A can sequester key components of the BCR
signalling complex, including Syk and Lyn, thereby partially
blocking BCR signalling in infected cells to prevent induction of
the virus replicative cycle and thereby maintaining latency
[90, 91]. However, it has subsequently been shown that in the
absence of other stimuli, LMP2A can activate the lytic cycle [92].
We and others have shown that while some of the downstream
consequences of BCR activation and LMP2A expression do
overlap, there are notable differences [93, 94]. Thus, LMP2A
concordantly regulates the tyrosine phosphorylation of PI-3-
kinase, Syk, and the Ca2+ initiation complex (comprising BLNK,
BTK, and PLCγ2), resulting in oscillatory Ca2+ fluxes similar to
those observed after BCR stimulation [94–96].

CA2+ HOMEOSTASIS AND THERAPEUTIC IMPLICATIONS
Cytosolic Ca2+ concentration is affected by a number of
chemotherapy drugs, some of which are commonly used for
treatment of lymphoma patients [97]. Whilst their specific
molecular targets and affected Ca2+-dependent pathways have
been extensively investigated in the context of non-
haematopoietic cells (normal and malignant) [97–100], there are
only a limited number of studies that address the effect of the
drugs on calcium homeostasis in B cell lymphomas.

Fig. 2 Intracellular enzymes activated by calcium. Elevations in
intracellular Ca2+ result in activation of calmodulin-independent
and calmodulin-dependent enzymes.
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Humanised anti-CD20 mAbs are routinely used for the
treatment of B-cell lymphomas [101]. Targeting CD20 with
rituximab (RTX) or Obinutuzumab induces both transient and
sustained (Orai1–dependent) influx of Ca2+ to the cytoplasm and
activation of Ca-dependent signalling pathways linked to the
antibody-induced cell death [102, 103]. It has been proposed that
targeting CD20 with therapeutic antibodies induces CD95(FAS)-
dependent and CD95-independent apoptosis [102, 103]. Sensitiv-
ity to RTX-based chemotherapy was shown to be dependent on
the expression levels of Cav1.2, a L-type voltage-gated calcium
channel and treatment with a channel agonist markedly increased
the sensitivity of DLBCL cell lines to RTX [104].
The R-CHOP therapy (a combination of RTX with cyclopho-

sphamide, doxorubicin, vincristine and prednisolone) is a standard
treatment for DLBCL patients. However, ~40% of the patients
treated with R-CHOP are either resistant to the initial treatment or
will subsequently relapse [105]. Elevated expression of a number
of calcium-binding proteins has been associated with resistance to
R-CHOP treatment in DLBCL patients. TRPM4 is a calcium-
dependent monovalent cation channel that transports K+ and
Na+ into cells, which, in turn, regulate intracellular Ca2+ home-
ostasis [106]. TRPM4 is overexpressed in ABC-DLBCL, and
correlates with poorer overall survival of patients treated with
R-CHOP [107]. In another study, R-CHOP-resistant DLBCL cell lines
expressed high levels of Sorcin [108], a cytosolic multifunctional
calcium-binding protein that is also highly expressed in DLBCL
samples when compared with normal lymphoid tissues [109].
Ibrutinib has proven to be effective in the treatment of both

indolent and aggressive B-cell lymphoma [110]. Ibrutinib inhibits
BCR-induced calcium flux in normal B cells [111]. Gain of function
mutations in the gene encoding PLCγ2 [112] are thought to be
one of the major factors responsible for resistance to Ibrutinib in
patients with MCL [113].
Bortezomib, a reversible proteasome inhibitor is approved for

the treatment of relapsed or refractory MCL. The cytotoxic effect
of bortezomib on established MCL cell lines and MCL-initiating
cells was enhanced in the presence of L-type calcium channels
inhibitor potentially through a more potent inhibitory effect on
the activation of the NF-κB pathway [114].

FUTURE DIRECTIONS
There remain significant gaps in our understanding of how Ca2+-
dependent signalling contributes to lymphomagenesis. While we
need to expand our knowledge of how calcium-dependent
enzymes discussed in this review regulates cellular responses in
different B-cell lymphomas, a systematic “omics-based”
approaches may be necessary to dissect the exact nature of
Ca2+-centred signalling networks and how they operate in normal
and malignant B-cells. These studies should include other
cytoplasmic and secretory proteins whose activity is dependent
on calcium (e.g., cyclic nucleotide phosphodiesterase (PDE),
adenylyl cyclase, S100, transglutaminase). For example, the role
of various plasma membrane calcium pumps and channels in
controlling basal intracellular levels of Ca2+ levels requires
investigation, as does how changes in the expression of these
proteins affect steady-state activities of calcium-dependent
enzymes. The results of these experiments may be particularly
relevant for lymphoma patients with disrupted calcium haemos-
tasis leading to hypercalcemia, that is associated with shorter
progression-free and overall survival [115, 116].
Communication between the malignant B-cells and other cell

types in the tumour microenvironment is also a critical factor in
B-cell lymphomagenesis [117]. Although not investigated in the
context of B-cell lymphomas, the contribution of CREB- and NF-κB-
induced secretion of cytokines and chemokines downstream of
calcium-dependent pathways are well documented in other
tumour types. At the post-transcriptional level, calcium-binding

proteins in the ER (i.e., calnexin and calreticulin) are well placed to
control early steps of the secretory pathway [118]. Finally, calcium-
dependent signalling pathways are known to control the
composition of vesicles secreted by cancerous cells [119], thus
affecting the behaviour of other cells in the immediate tumour
microenvironment.
Whilst novel therapeutic approaches are beginning to emerge,

most lymphoma patients continue to be treated with standard
chemotherapy with or without CD20-targeting antibodies. A
better understanding of how commonly used chemotherapy
drugs affect the expression and function of key players within
calcium-centred signalling networks may provide a solid basis for
further optimisation of the current treatment protocols and the
development of new therapeutic strategies.
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