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Neuroblastoma (NB) has a low frequency of recurrent mutations compared to other cancers, which hinders the development of
targeted therapies and novel risk stratification strategies. Multikinase inhibitors have shown potential in treating high-risk NB,
but their efficacy is likely impaired by the cancer cells’ ability to adapt to these drugs through the employment of alternative
signaling pathways. Based on the expression of 48 growth factor-related genes in 1189 NB tumors, we have developed a model
for NB patient survival prediction. This model discriminates between stage 4 NB tumors with favorable outcomes (>80% overall
survival) and very poor outcomes (<10%) independently from MYCN-amplification status. Using signaling pathway analysis and
gene set enrichment methods in 60 NB patients with known therapy response, we identified signaling pathways, including EPO,
NGF, and HGF, upregulated in patients with no or partial response. In a therapeutic setting, we showed that among six selected
growth factors, EPO, and NGF showed the most pronounced protective effects in vitro against several promising anti-NB
multikinase inhibitors: imatinib, dasatinib, crizotinib, cabozantinib, and axitinib. Mechanistically kinase inhibitors potentiated NB
cells to stronger ERK activation by EPO and NGF. The protective action of these growth factors strongly correlated with ERK
activation and was ERK-dependent. ERK inhibitors combined with anticancer drugs, especially with dasatinib, showed a
synergistic effect on NB cell death. Consideration of growth factor signaling activity benefits NB outcome prediction and tailoring
therapy regimens to treat NB.
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INTRODUCTION
Neuroblastoma (NB) is the most common pediatric extracranial
solid tumor and is responsible for ~8% of all childhood cancer
cases [1]. One of NB hallmarks is high clinical heterogeneity: low-
risk NB treated without chemotherapy and high-risk NB having a
survival rate of <50% even after multimodal therapy [2]. Current
NB risk stratification is mainly based on an assessment of clinical
data, tumor histology, and genetic aberrations, such as MYCN-
amplification (20% of all NB and 50% of high-risk NB) and 11q
aberrations (20–45% of all NB) [3, 4]. NB has a very low frequency
of recurrent mutations, and for the majority of high-risk NB driver
mutations or genetic aberrations have not been yet identified [5].
Despite lack of mutations in growth factor receptors and other

receptor tyrosine kinases (RTKs), except ALK (mutated in 9% of all
NB), which has a strong correlation with MYCN-amplification [6],
several studies showed that NBs are highly dependent on RTK
signaling, such as KIT [7, 8], PDGFRB [8], MET [9], and RET [9, 10].
Several multikinase inhibitors such as imatinib, dasatinib, and

crizotinib that target several RTKs, including KIT, PDGFRs, and ALK,
have been tested in clinical trials for high-risk NB treatment
(clinical trials: NCT02559778, NCT00030667, NCT01467986,
NCT00788125, NCT00939770, and NCT03126916). Although high-
risk NB showed an improved initial response to multikinase
inhibitors, many tumors lose sensitivity to these drugs [11–15],
suggesting that malignant cells’ adaptation to multikinase
inhibitors mainly hindered such therapy’s effectiveness.
Several large-scale studies identified novel prognostic markers

for high-risk NB based on rare somatic mutations and genetic
alterations [5, 16], TERT gene rearrangements [17], and chromo-
thripsis [18]. Considering the high dependency of NB cells on
growth factor signaling, we chose a different approach. We
investigated which signaling pathways, mainly growth factor-
related, are associated with NB progression and therapy escape
and how these pathways can be effectively targeted. We were also
interested whether activation of certain growth factor signaling
pathways would affect efficacy of kinase inhibitors.
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RESULTS
Growth factor-related genes expression defines NB subtypes
First, we analyzed how diverse NB tumors are, based on growth
factor-related genes expression. We selected 1189 NB tumors from
five independent datasets with available gene expression and
disease outcome data from R2: Genomics analysis and visualiza-
tion platform: Kocak, NRC, Versteeg, Maris, and Westermann
[18–23] (Table S1) and 277 genes (172 present in all datasets)
encoding cell receptor ligands, including growth factors, their
receptors, and downstream kinases from HUGO Gene Nomencla-
ture Committee (HGNC) database (Table S2). Our analysis revealed
three clusters (Figs. 1a, S1a), each characterized by the differen-
tially expressed (DEGs) receptors or their downstream kinases
(Fig. 1b, Table S2). Cluster 1 had the highest percentage of MYCN
amplified (48%) (Fig. S1a, b) and was characterized by higher
expression of several receptors such as DDR2, ROR2, ALK, and RET
(Fig. 1a, Table S2). Cluster 3 had the lowest percentage of MYCN
amplified tumors (1%) (Fig. S1a, b) and had a high expression of
NTRK1, NRCAM, and NCAM1 (Fig. 1b, Table S2). High expression of
these receptors is associated with a better prognosis for NB
patients [24, 25]. Cluster 2 had a higher expression of several
receptors and kinases associated with immune cells: FLT3, CSF2RB,
RAC2, LCK, ITK, and ZAP70 (Fig. 1b, Table S2) [26], potentially
indicating immune infiltration. As expected, patients from cluster
1 with a prevalence of MYCN amplified tumors had the worst
prognosis, and patients in cluster 3 had a very favorable prognosis
(Fig. S1c).
The expression of many receptors from clusters DEGs, including

several potential drug targets, was significantly associated with NB
patient survival (Fig. S2a, Table S3). Interestingly, we found that
several receptors had a different association with survival
prognosis, depending on whether MYCN amplified tumors were
included in the analysis. KIT, FGFR2, and ROR2 had a much more
significant association with the worse outcome when MYCN
amplified tumors were included in the analysis (Fig. S2b). MET,
RYK, DDR2, ALK, and RET were strongly associated with poor
outcomes independently from the inclusion of MYCN amplified
tumors (Fig. S2b). All these receptors are higher expressed in
cluster 1 (Table S2), supporting our observation that high
expression of these receptors may mimic aggressive MYCN
amplified phenotype, even in MYCN non-amplified tumors.
Interestingly, higher EPOR expression, upregulated in cluster 1
tumors without MYCN-amplification (Table S2), was strongly
associated with worse prognosis only in NB tumors without
MYCN-amplification (Fig. S3).
To evaluate which growth factor-related genes expression could

provide beneficial information for predicting patient survival, we
performed logistic regression with elastic net regularization to
train a model for NB outcome prediction based on gene
expression. We selected 147 genes that were differentially
expressed in MYCN amplified or MYCN non-amplified tumors
from different clusters (Fig. 1c). We used an integrated and batch-
controlled dataset with available gene expression and survival
data [27], which contains data for large amount of NB samples
(n= 786). To generate a model which can be applied and tested
on independent datasets, we normalized gene expression data by
dividing each gene expression by its mean expression in a whole
dataset. We separately trained survival prediction models for
MYCN amplified and MYCN non-amplified tumors since many
genes have a different impact on survival prognosis for these
tumor types.
After the first round for each model, we selected 20% genes

(n= 28) with the highest absolute weight coefficients (Fig. 1c). In
total, we selected 48 genes, and only eight genes were common
for MYCN amplified and non-amplified models (Fig. 1d). Then
we used these genes to generate the final model, which
separately predicts the survival of patients with or without
MYCN-amplification (Table S4). Prediction accuracies for both

cases were then checked on a test dataset using precision-recall
(Fig. 1d). When our model was applied to other datasets, which
were independently normalized, we achieved good ROC AUC
values (0.69–0.94) for datasets that were partially included in our
train/test dataset (Versteeg and SEQC), as well as for completely
independent NRC and Westermann datasets (Fig. 1e). Next, we
divided NB patients into five groups, based on survival predicted
by our 48 gene model: >95%, 85–95%, 60–80%, 40–60%, and
<40% survival probability. We show that our predicted survival
probability matches actual survival probability and potentially
provides better risk stratification than INSS staging (Fig. 1f).
Moreover, our model allows distinguishing between INSS stage 4
patients with favorable and very poor survival prognosis, even
when MYCN amplified highly aggressive tumors were excluded
from analysis (Fig. 1f).

Activated growth factor signaling is associated with
metastasis, poor outcome, and relapse incidence in NB
patients
We investigated the association of signaling pathways activities
with tumor metastasis and response to the therapy to expand our
observations that growth factor signaling contributes to the
development of aggressive NB phenotypes. To calculate associa-
tion of signaling pathways with therapy response and metastasis
we used gene expression profiles for 60 NB, ganglioneuroma, and
ganglioneuroblastoma tumors (41 samples from previously
published dataset and 19 new samples) [28] with extensive
clinical data, including presence of metastasis, and response to the
therapy, and applied the Oncobox algorithm [29] (Fig. 2a, Table S5,
Fig. S4).
We calculated changes in signaling pathways for patients with

metastatic vs. localized tumors and responder vs. nonresponder
patients (Fig. 2a, Tables S5). Among signaling pathways with the
highest association with metastatic NBs and NBs with poor
response to the therapy were growth factor signaling pathways:
erythropoietin (EPO), neural growth factor (NGF), and hepatocyte
growth factor (HGF) (Fig. 2b, Table S5). MAPK-dependent cell
survival was also associated with metastatic and poor response
tumor phenotypes, and MAPK signaling is one of the main
pathways activated by growth factors.
Expressions of both EPOR (p < 0.05) and EPO (p < 0.01) genes

were higher in metastatic NB tumors, thus suggesting the
existence of EPO/EPOR autocrine loop in aggressive NB tumors
(Fig. 2c). In agreement with the previous findings that NTRK1
expression (encodes NGF receptor TrkA) is associated with
favorable prognosis [24], NTRK1 was downregulated in metastatic
tumors, although NGF expression was elevated. Next, we analyzed
gene expression in primary and relapsed NB tumors without MYCN
amplification from the Seeger dataset [30]. We found higher EPOR
expression in 46 primary tumors of patients who later had a
relapse than in 56 patients without relapse (p < 0.01), and EPOR
expression was even higher in 15 tumors directly isolated from
relapsed NB tumors EPOR (p < 0.001) (Fig. 2d).
Notably, higher EPOR expression was linked to a worse

prognosis in patients without MYCN gene amplification in NB
datasets (4/7 with p < 0.05) (Fig. S3). While MET expression
(encodes HGF receptor) was not associated with metastasis or
relapse, its higher expression strongly correlated with consider-
ably worse outcomes (Fig. S2a, b). HGF expression was elevated in
metastatic NB (Fig. 2c) but had no association with relapse events
(Fig. 2d). Our findings suggest that EPO may contribute to relapses
and overall NB progression, and HGF and NGF might contribute to
metastases’ formation and tumor cell survival during therapy.

Growth factor receptors are involved in similar cellular
processes in NB
To understand which biological processes are activated by growth
factor receptors in NB tumors and contribute to aggressive tumors
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development, we developed a new method: Gene set Prognostic
Scoring (GPScore). This method is based on gene set enrichment
analysis (GSEA) [31] combined with the calculation of prognostic
scores for each gene set based on clinical data (Fig. 3a, Table S6).
Although the association of individual gene expression with
prognosis does not indicate its involvement in the development
of tumor phenotype, we reasoned that if most genes involved in

the same process are associated with poor prognosis, this process
is more likely to be involved in aggressive phenotype develop-
ment. Thus we calculated prognostic scores (Fig. 3a) based on the
Kaplan–Meier survival analysis for each gene within each gene set,
using overall survival data from three NB datasets covering 847 NB
samples: Versteeg (n= 88) [18], NRC (n= 283) [22], and Kocak
et al. (n= 476) [20] (Table S7). Prognostic score calculation showed
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high consistency for independent datasets of various sizes
(Fig. S5a) and provided statistically significant results compared
to randomly generated gene sets (Fig. S5b, and Methods section).
We identified 25 gene sets for EPOR with prognostic score values
different from randomized gene sets (FDR q < 0.01; Table S7). DNA
repair, RNA stability, and splicing gene sets formed distinct
clusters for EPOR (Fig. 3b) and had a high prognostic score, i.e.,
correlated with poor overall survival. These results suggest that
EPOR may contribute to aggressive NB phenotype development
through these biological processes.
In addition to EPOR, we selected several other receptor genes

associated with poor outcomes (Fig. S2a, b) and a sufficient
number of enriched GO gene sets (Table S5): NTRK2, MET, KIT, and
DDR2. We also included NTRK1 because increased NGF signaling
was associated with metastatic and poor response NB (Fig. 2b, c).
For each receptor, we performed GPScore analysis and compared
enriched GO gene sets. We found that these receptor genes
shared 12 gene sets (shared by at least 5 of 6 genes) (Fig. 3d).
Among these gene sets, base-excision DNA repair showed the
highest prognostic score, shared by all receptor genes except
(Fig. 3d, Table S6, S7). We calculated base-excision repair scores for
each NB tumor sample from three datasets (Versteeg, NRC, and
Kocak) as a mean squared expression of all genes listed in base-
excision repair GO, and divided patients into four groups
(quartiles) based on the calculated score. Compared to INSS
staging, our score provided better risk stratification, especially for
intermediate-risk patients: Q4, Q3, and Q2 had better discrimina-
tion than stages 1, 2, 3, and 4S (Fig. 3e, S5c). Thus, we show that
the GPScore method can help identify processes related to
particular genes and potentially involved in aggressive tumors
development and develop new risk stratification strategies based
on gene expression patterns.

Growth factors NGF and EPO protect NB cells from anticancer
drugs
We identified increased growth factor signaling as a potential
therapy-induced cell death escape mechanism in NB tumors. Since
growth factor signaling is the main target for many kinase
inhibitors, we were particularly interested in whether activation of
alternative growth factor signaling pathways would affect kinase
inhibitors efficacy. To test our hypothesis, we selected six drugs:
vincristine, used for NB therapy, and five multikinase inhibitors
and measured how the addition of growth factors affected the
survival of six NB cell lines: SH-SY5Y, SK-N-BE, LAN-1, Kelly, SK-N-
AS, and SK-N-SH. We analyzed mutation data for 46 NB cell lines
from the CCLE database [32] to select potential kinase inhibitors
and compared mutation frequency in cell lines with patient
tumors from the TARGET dataset [5]. We found that many
mutations in genes, such as RP1L1, TP53, CACNA1H, VWF, PKD1L1,
and TP53, were highly overrepresented in NB cell lines, each
mutation was present in more than 40% cell lines compared to NB
patients, in which these mutations were found for less than 1%
tumors (Fig. S6a, Table S8). Thus we selected 18 mutations that are
present in at least 2% of NB patients and present in at least one

cell line from our panel. The most common mutations were in ALK
(4/6 cell lines), TTN (3/6), RYR1, and MUC17 (2/6) genes (Table S1).
Then we used published algorithm [33] to search the DSigDB
database for FDA approved drugs which can directly target either
147 growth factor-related DEGs for NB clusters (Fig. 1a, Table S2)
or 18 found mutations (Table S8). We selected the potential anti-
NB drug crizotinib, which among its 36 targets, also inhibits
mutant ALK isoform (Table S8). We also selected KIT/ABL inhibitors
imatinib, dasatinib, tested in clinical trials for NB treatment, and
two additional drugs with different main targets axitinib (VEGFRs,
FGFRs), and cabozantinib (MET, RET, AXL). A full list of drug targets
is provided in Table S8.
To test how growth factors affect NB cell survival, we selected

six growth factors: EPO, NGF, HGF, and IGF-1 as they had the most
upregulated pathways in tumors with poor response to the
therapy (Fig. 2b). Additionally we selected SCF, and BDNF, as their
receptors KIT and NTRK2 high expression is associated with poor
NB survival (Fig. S2a), and these growth factor has reported ability
to protect NB cells from anticancer drugs [34, 35]. NB cells were
treated with drugs with and without the addition of growth
factors for 6 days (Fig. 4a). Drug concentrations which reduce cell
survival by 70–90% were used (Fig. S7a, Table S9). To obtain the
more comprehensive results, we compared cell viability data for
all six cell lines combined (Fig. 4b). To discriminate growth factors’
ability to stimulate cell proliferation from their protective action
against drugs, we compared growth factor-induced cell viability
increase in drug-treated cells with mock-treated (DMSO) cells. EPO
and NGF showed the most pronounced protective effects, while
IGF-1 and HGF could not protect cells from any drug. We analyzed
gene expression in NB cell lines from GSE78061 to determine
which NB cluster each of these cell lines better represented based
on the weighted mean squared expression of clusters DEGs. SH-
SY5Y, Kelly, and SK-N-BE closer represented cluster 1, LAN-1 and
SK-N-AS cluster 2, and SK-N-SH cluster 3 (Fig. S6b). Growth factors
affected cell lines representing cluster 1 (SH-SY5Y, SK-N-BE, and
Kelly) significantly stronger than other cell lines (Fig S6c). This is
consistent with our results that NB tumors from cluster 1 overall
have higher expression of receptors, including KIT, MET, NTRK2,
and EPOR (Fig. 1b, Table S2). Overall we observed significant
protective effects against all drugs except vincristine. However,
EPO, NGF, and IGF-1 could protect individual cell lines from
vincristine (Fig. S7b). These results are consistent with previous
reports that EPO [36] and NGF [35] can protect NB cells from
chemotherapy drugs, such as doxorubicin, etoposide, and
vincristine.
To address whether such protective effect of these drugs can be

attributed to changes in the expression level of receptor genes,
we measured imatinib, dasatinib, crizotinib, and vincristine effects
on EPOR, IGF1R, KIT, MET, NTRK1, and NTRK2 expression. All drugs,
except crizotinib, upregulated receptor gene expression in several
cell lines (Fig. 4c). Changes in protein levels for EPOR and NGF
receptor TrkA were confirmed by antibody staining (Fig. 4d). EPOR
expression upregulation significantly correlated with EPO-induced
cell survival (Fig. 4e), suggesting that receptor upregulation may

Fig. 1 Growth factor-related genes expression in NB tumors. a NB tumors (n= 1189) clustering based on UMAP and HDBSCAN algorithms.
NB tumor Kocak, NRC, Versteeg, Maris, and Westermann datasets were downloaded from the R2: Genomics analysis and visualization platform
(Table S1). Additional UMAP plots are provided in Fig. S1, and UMAP data is provided in Table S2. “No cluster” indicates samples that did not
belong to any cluster based on HDBSACN clustering. b Top ten differentially expressed receptor and non-receptor genes (DEGs) for each
cluster with lowest p values after FDR correction from 168 genes used for UMAP. Gene expression is provided as log2 fold change compared
to mean expression across all samples. DEGs for each cluster are provided in Table S2. c Scheme for creation of survival prediction model for
patients with MYCN amplified (amp) and non-amplified (non-amp) NB tumors based on 147 cluster DEGs expression using logistic regression.
d Genes used in the final model for MYCN amplified and non-amplified tumors and precision-recall curves for each part of the final model.
Font size is proportional to the absolute weight coefficient of each gene in the model. e ROC curves for prediction of patient survival in
individual datasets using the final model. AUC values are provided for each dataset. f Kaplan–Meier survival analysis of NB patient survival
from Cangelosi dataset using either INSS staging or 48 growth factor-related gene prediction model. Survival analyses for INSS stage 4 tumors
(including MYCN amplified) and stage 4 tumors excluding MYCN amplified are shown at the bottom.
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be one of the possible mechanisms for cell death escape.
However, this mechanism may be limited to EPO/EPOR signaling.
To verify whether EPOR upregulation may be connected to NB cell
survival, we downregulated EPOR expression in SH-SY5Y and LAN-
1 cells using anti-EPOR shRNA (Fig. S8a). EPOR knockdown did not
affect cell proliferation but significantly reduced EPO effect on cell
survival for imatinib or dasatinib-treated cells (Fig. S8b).

Multikinase inhibitors potentiate NB cells to EPO and
NGF-mediated ERK activation
Along with the growth factor signaling pathways, the MAPK cell
survival pathway was strongly associated with poor therapy
response (Fig. 2b). MAPK/ERK signaling is the central downstream
signaling activated by growth factors and directly controls cell

survival. We decided to investigate how two growth factors that
showed the most prominent effects on cell survival (EPO and NGF)
impact ERK activation during treatment with anticancer drugs. We
employed the ERK-KTR (kinase translocation reporter) system that
allows live-cell measurement of kinase activity in single cells and
created SH-SY5Y and SK-N-BE cells with ERK-KTR [37, 38] (Figs. 5a,
S9, S10a,b).
We observed different effects of drugs on ERK activity in NB

cells. Treatment with imatinib, dasatinib, cabozantinib, and
axitinib, but not crizotinib, maintained high ERK activity in NB
cells, and ERK was not inhibited even at highly toxic concentra-
tions (Figs. 5b, S10c). This is in line with our results that imatinib
and dasatinib, but not crizotinib upregulated expression of growth
factor receptors, which may contribute to maintaining ERK activity

Fig. 2 EPO, HGF, and NGF signaling pathways are upregulated in aggressive NB tumors. a Experimental design for signaling pathway
analysis in 49 NB, 6 ganglioneuroma, and 5 ganglioneuroblastoma patients. b 2D plot showing association of each signaling pathway with
metastasis and response to the therapy. Axes show pathway activation levels (PALs) in patients with poor therapy response vs. good response
(poor response axis) and in metastatic vs. localized tumors (metastasis axis). Higher values indicate that certain pathway is strongly
upregulated in either patients with poor therapy response or metastasis. Heatmap for top 100 changed pathways in metastatic and resistant
tumors is provided in Fig. S4. c Expression of EPO, EPOR, NGF, NTRK1, HGF, and MET genes in localized (n= 19) and metastatic (n= 30) NB
tumors. d Gene expression in primary NB tumors that did not relapse (relapse-free, n= 56), relapsed later (n= 46), and in samples obtained
from already relapsed NB tumors (n= 15). Transcriptomic data for relapsed patients was taken from the Seeger NB dataset [30]. Median values,
25 to 75th percentiles, individual data points, minimal and maximal values are shown on box and whiskers graphs. *p value < 0.05; **<0.01;
***<0.001 as calculated by Mann–Whitney U test.

T. Lebedev et al.

6262

Oncogene (2021) 40:6258 – 6272



a

Fig. 3 Gene set prognostic scoring for growth factor receptors in NB tumors. a Design of a GPScore (Gene set prognostic scoring) algorithm
for calculation of gene prognostic scores, data visualization, and analysis. SPLICEOSOMAL_SNRNP_ASSEMBLY gene set is provided as an
example. b Multidimensional scaling of enriched gene sets associated with EPOR expression in NB patients. Only gene sets with prognostic
scores that passed the FDR test (q value < 0.01) are marked. c Circos plot showing the number of shared gene sets calculated by GSEA for each
gene pair. The width of ribbons is proportional to the number of shared enriched gene sets. d Prognostic scores for 12 enriched gene sets
shared by at least 5 of 6 genes. Dot lines indicate 3 sigma interval for prognostic scores distribution for 20 randomly generated gene sets.
e Kaplan–Meier survival analysis for Kocak dataset (n= 476) based on base-excision repair score (divided into quartiles from highest Q1 to
lowest Q4 scores) and INSS stages. A similar analysis for NRC and Versteeg datasets is provided in Fig. S5b.
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Fig. 4 EPO and NGF protect NB cells from anticancer drugs. a Experiment design for studying growth factor-induced cell survival. NB cells
were treated for 72 h with drugs with/without growth factors (GF) for 72 h, then growth media was changed, new drugs and GFs added in the
same concentrations, and cell viability measured after another 72 h. Drug action on cell survival in absence of GF is shown in Fig. S7a, drug
concentrations are provided in Table S9. b Growth factor-induced cell survival for NB cells treated with anticancer drugs. Each dot represents
mean viability fold change for a particular cell line treated with the drug in combination with 100 ng/ml GF compared to cells treated with the
drug alone. Each experiment for each cell line and drug/GF combination was performed in triplicates. Mean changes in cell viability for all six
NB cell lines treated with drug/GF combination were compared with cells treated with DMSO and GF. Mean and SD values are shown,
Friedman test was used to determine statistically significant differences. *p value < 0.05; **<0.01; ***<0.001; ****<0.0001. c Heatmaps of gene
expression fold changes in NB cells treated with imatinib, dasatinib, crizotinib, and vincristine compared to cells treated with DMSO (mock
treatment). Expression changes were measured by real-time PCR. d Staining with anti-EPOR and anti-TrkA antibodies of SH-SY5Y and SK-N-BE
cells after imatinib treatment for 72 h and measured by flow cytometry. Each experiment was performed in triplicate, the most representative
histograms are shown, p values are calculated by a two-sided t test. e Pearson correlations of GF-induced protective effect and receptors
expression change in drug-treated NB cells.

T. Lebedev et al.

6264

Oncogene (2021) 40:6258 – 6272



(Fig. 4c). When NB cells were treated with EPO or NGF after 72 h
exposure to kinase inhibitors (Fig. 5c), these growth factors
resulted in ERK activation (Figs. 5c, S9). Unlike NGF, EPO failed to
activate ERK in non-treated cells (Fig. S10a). Notably, EPO and
NGF-induced cell survival significantly correlated with ERK
activation induced by them in drug-treated NB cell lines
(Fig. 5d). To verify ERK involvement in NB cell survival, we tested
ERK1/2 inhibitor FR180204 ability to affect ERK activation and cell
survival induced by EPO and NGF. Since JAK/STAT is a canonical

pathway activated by EPO, we also tested JAK2 inhibitor AG490.
ERK inhibitor showed a much higher potential to inhibit EPO and
NGF-induced ERK activation and survival in imatinib-treated cells
(Figs. S10b, S11a). Then we validated these results using ERK1/2
inhibitor ulixertinib, which undergoes clinical studies for RAS
mutated tumors, including NB (clinical trial NCT03698994)
(Fig. 5e). To test if ERK inhibition would also block EPO and NGF’s
protective action, we selected NB cells for which EPO and NGF
protective effects were the highest and treated them with a
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combination of imatinib or dasatinib with ulixertinib (Figs. 5g,
S11b). ERK inhibition completely blocked EPO and NGF in most
cases for SH-SY5Y and SK-N-BE and sufficiently reduced EPO and
NGF protective effect on LAN-1 cells.

ERK1/2 inhibition enhances anticancer drugs action on NB
cells
We noticed that ERK1/2 inhibition promoted cell death induced
by imatinib and dasatinib, and treatment with these drugs
maintained high ERK activity level. To investigate this, we first
compared the combined action of imatinib with either ERK1/2 or
JAK2 inhibitor on a panel of six NB cell lines (Fig. S12a). ERK1/2
inhibitor FR180204 combined with imatinib showed more
synergistic action on NB cell death than JAK2 inhibitor AG490
and significantly inhibited NB cells’ long-term proliferation in the
presence of imatinib (Fig. S12b). We expanded these experi-
ments and tested the combined action of ERK inhibitor
ulixertinib with imatinib, dasatinib, or vincristine on a panel of
six NB cell lines (Figs. 6a, S13). Ulixertinib in the concentration of
250 nM showed significant toxicity only for SH-SY5Y (35%
decrease in viability) and SK-N-AS cells (25% decrease in
viability), while 100 nM concentration was not toxic for all
tested cells (Fig. 6b). The addition of ulixertinib lowered IC50
values for tested drugs, and the most pronounced effects were
observed for dasatinib (on average 2.9-fold decrease in IC50)
(Fig. 6c, Table S10). Ulixertinib displayed high synergy with
dasatinib (6/6 cell lines with synergy score >10) and moderate
synergy with imatinib (3/6) and vincristine (2/6) (Fig. 6d). Based
on our data, we speculate that activation of EPO and NGF
signaling is a compensatory response of NB cells to multikinase
inhibitors that promote NB cell survival in an ERK-dependent
manner (Fig. 6e).

DISCUSSION
Our study shows that the expression of cellular receptors and
their downstream kinases can define NB subtypes which have a
distinct association with patient survival. We constructed a
model for predicting patient survival based on 48 genes
expression, which yields consistent results for different datasets.
We show that this model can be used to discriminate patients
with stage 4 tumors without MYCN-amplification into patients,
for whom current treatment will work well with survival >90%
and for whom standard therapy will probably fail with survival
probability <10%. This indicates that measuring the expression
of these 48 genes in addition to standard NB diagnosis and risk
assessment could be beneficial for predicting therapy efficacy,
especially for stage 4 tumors without MYCN amplification. Also,
our gene panel includes many drug targets, such as ALK, KIT,
MET, RET, FGFR2, and FLT1, which can be potentially used to
select alternative treatment options.

We identified EPOR signaling and ERK activation as possible
critical modulators of NB progression and therapeutic resistance.
Although EPO is considered a hematopoietic growth factor, its role
in the neuronal cells maintenance has been previously documen-
ted [39]. One histological study showed that EPOR is expressed in
more than 70% of NB tumors and has higher expression in lymph
node metastases than the primary tumor, but high EPOR protein
expression was associated with favorable outcomes for NB
patients [40]. Our data and meta-analysis of published datasets
strongly argue with the latter report [40] and are in line with most
of the other studies on this topic, including involvement of EPO in
NB [36] and breast cancer cell survival [41]. Taking together our
results that EPO-mediated survival correlates with EPOR expres-
sion upregulation by kinase inhibitors, an increase of EPOR
expression in relapsed tumors, and that EPO is produced by NB
[42] and neural crest cells [43] in more than 30% NB tumors [40],
we propose that EPOR upregulation is a potential marker for NB
tumors, which might escape anticancer therapy and result in a
relapse. Interestingly, we found significant correlation between
EPOR expression and patient survival only for MYCN non-amplified
tumors. The possible reason for this is lower EPOR expression in
MYCN amplified than in non-amplified tumors, and MYCN
amplification been stronger prognostic factor than EPOR expres-
sion. We did not find any difference in EPO action on survival of
MYCN amplified and non-amplified NB cells. However, the exact
prognostic significance of EPOR as such marker should be further
investigated in vivo experiments and clinical trials.
Notably, we discovered a correlation between ERK activation

and EPO or NGF protective action and the direct effect of ERK
inhibition on NB cell survival. A likely mechanism for EPO
protective action on NB cells is a combination of a dynamic
upregulation of EPOR expression and the selective pressure for NB
cell subsets expressing EPOR. Another potential mechanism for NB
drug resistance is that many kinase inhibitors can be targets for
MDR1 protein, but we did not observe any significant changes in
expression of its gene ABCB1 after EPO or NGF treatment or ERK
inhibition (Fig. S8c). Currently, ERK or MEK inhibitors are
considered mainly for the treatment of NB tumors with activating
RAS mutations, which constitute a very aggressive NB subtype, but
are relatively rare (<1% of primary tumors) [5, 44]. Our data
indicate that ERK inhibitors might improve the outcome for many
NB tumors, primarily in which survival depends on growth factor
signaling rather than mutations in the RAS/MAPK pathway.
Our study has several limitations: most NB tumors used for

transcriptomic analysis were treated with the standard treatment
protocols (such as NB2004), which do not include kinase
inhibitors. However, we and other groups report that EPO and
NGF can protect NB cells from vincristine, etoposide, and
doxorubicin EPO [35, 36], which are used for NB treatment. Here
we show that growth factors, such as EPO, NGF, and BDNF, exert a
significantly stronger protective effect against kinase inhibitors

Fig. 5 EPO and NGF protective action on NB cells are ERK-dependent. a Schematic presentation of ERK-KTR system. b ERK activity measured
by ERK-KTR cytoplasm to nucleus ratio (C/N ratio) in SH-SY5Y and SK-N-BE 24 h after treatment and cell viability measured 72 h after treatment
with imatinib and crizotinib. Data for other drugs are present in Fig. S10c. c SH-SY5Y, and SK-N-BE cells were treated with drugs
(concentrations are listed in Table S9) for 72 h, and then the ability of EPO and NGF (100 ng/ml) to activate ERK was measured. Cells were
serum-starved (by FBS removal) 6 h prior addition of recombinant proteins. BSA (0.1%), in which EPO and NGF were reconstituted, was used
for a mock treatment. ERK activation by EPO and NGF in the absence of drug treatment is shown in Fig. S10a. Violin “superplots” [58, 59] show
the average distribution of ERK activity (C/N ratio). Individual points on violin plots show median C/N ratios for each measurement (n= 6) of
150 cells on average. d Pearson correlation between EPO and NGF-induced changes in ERK activity and their effect on cell viability for SH-SY5Y
and SK-N-BE cells treated with drugs. e SH-SY5Y cells were treated with imatinib (25 µM) or dasatinib (25 nM) for 72 h, and then the ability of
EPO and NGF to activate ERK in the presence of ulixertinib (250 nM) was measured. Ulixertinib was added during serum starvation. Images
were taken 30min after addition of EPO or NGF, shown in Fig. S9. f Cell viability of SH-SY5Y, SK-N-BE, and LAN-1 cells after treatment with
imatinib and dasatinib in combination with ulixertinib in the presence of EPO or NGF (100 ng/ml each). Cells were treated as described
previously in Fig. 4. Additional controls are shown in Fig. S10b. Mean values, individual data points, and SD are shown on all graphs except
violin plots. For violin plots, median values and 25 to 75th percentiles are shown. *p value < 0.05; **<0.01; ***<0.001 as calculated by
Mann–Whitney U test.
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than against vincristine, and these growth factors may potentially
hinder therapy efficacy of kinase inhibitors. Another limitation is
that our analysis of growth factor signaling in NB tumors is based
on gene expression rather than receptor and kinase phosphoryla-
tion. However, main goal of our study was to test whether gene
expression signatures could be used to determine NB outcome

prognosis and growth factors that may functionally affect NB cells.
Results obtained from transcriptome analyses were confirmed on
a panel of NB cell lines. Evaluating signaling in patient or xenograft
tumors on protein level could further improve our mechanistic
understanding of how exactly cells adapt to the therapy. Although
combinations of ERK inhibitor ulixertinib with imatinib and
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dasatinib were tested only on cell lines, all these drugs were
previously tested in NB xenograft models, and clinically relevant
concentrations can be achieved. The drug concentrations, except
for axitinib, used in our study are similar or only slightly higher
than the observed serum concentrations in treated humans
(Table S1). Importantly, dasatinib, imatinib, crizotinib, and
ulixertinib have been tested in NB clinical trials, and their safety
and clinical potential have been verified.
In conclusion, our results indicate that assessing growth factor

signaling in NB tumors can lead to the development of novel risk
assessment strategies and treatment options, and a better
understanding of therapy resistance mechanisms. We show that
ERK inhibition is a potential therapeutic approach to enhance the
efficacy of anticancer drugs used to treat NB tumors and not
limited to NB tumors with RAS mutations.

MATERIALS/SUBJECTS AND METHODS
Cell cultures, inhibitors, and growth factors
Human NB cell line: SH-SY5Y, SN-K-AS, SK-N-SH, LAN-1, SK-N-BE,
and Kelly were cultured in RPMI 1640 medium (Gibco) supple-
mented with 10% fetal calf serum (FCS) 100 U/ml penicillin,
100 μg/ml streptomycin, and 1mM sodium pyruvate at 37 °C and
5% CO2. Cell densities used for experiments and mutation status
for each cell line is provided in Table S1. HEK293T cells were used
for generation of lentiviral particles stocks and were cultured in
DMEM medium (Gibco). All NB cell lines were gifted by the
Heinrich-Pette Institute—Leibniz Institute for Experimental Virol-
ogy. HEK293T were gifted by Boris Fehse and Kristoffer Riecken
from University Medical Center Hamburg-Eppendorf, Hamburg,
Germany. None of the used cell lines is listed in the list of
commonly misidentified cell lines maintained by the International
Cell Line Authentication Committee. List of drugs and growth
factors used in this study is provided in Table S1.

Lentiviral pseudotyped particles production and titration
pLentiCMV Puro DEST ERKKTRClover was a gift from Markus
Covert (Addgene plasmid # 59150) [37]. The stocks containing
VSV-G pseudotyped lentiviral particles were generated by co-
transfection of HEK293T with LeGO-C shRNA or pLentiCMV Puro
DEST ERKKTRClover, and packaging plasmids. For the creation of
SH-SY5Y and SK-N-BE cells expressing ERK-KTR, cells were
transduced with ERKKTRClover lentiviral particles to achieve
~30–50% transduction rate and then transduced cells were
selected with medium supplemented with 1 μg/ml puromycin
(Sigma). The DNA sequences encoding anti-EPOR (shEPOR) or
non-specific control (shSCR) shRNAs were subcloned into the
HpaI/XhoI sites of LeGO-C plasmid containing the mCherry
protein. LeGO-C plasmid for shRNA expression was a gift from
Boris Fehse (http://www.lentigo-vectors.de/) [45]. shEPOR
sequences are provided in Table S1, shSRC is described in
[46]. The amount of shRNA lentiviral particles per cell that
resulted in at least 90% SH-SY5Y and LAN-1 cells transduction
was used for further experiments. Transduction rates were
verified by flow cytometry.

Analysis of cell survival, drugs IC50, and synergy
The number of viable cells was counted in Neubauer chamber by
trypan blue exclusion method. For growth factor-mediated cell
survival (Fig. 4b) cell viability was measured by XTT (Sigma, USA).
For cell viability calculation measured by XTT absorption signals
for growth media without cells were subtracted from signal for
wells containing cells. Signal for mock-treated cells (treated with
DMSO) was considered as 100%. For calculating drugs synergies or
IC50 values cells were treated with drug combinations for 72 h. For
each ERK or JAK2 inhibitor concentration used in combination
with other drugs cell viability was normalized to the number of
cells treated without additional drug. Approximations for IC50
calculations were performed by nonlinear regression with variable
slope (four parameters) and robust fitting. Synergy scores were
calculated using Bliss model in SynergyFinder2.0 [47].

Direct flow cytometry
For TrkA detection we used FITC-conjugated anti-TrkA antibodies
(ab194321, Abcam, USA) and for EPOR detection we use primary
anti-EPOR antibodies (PA5-8484, ThermoFisher Scientific, USA)
and secondary anti-rabbit Ig antibodies conjugated with FITC
(F4890, Sigma, USA). Secondary antibodies were used as a
control for non-specific staining. Measurements were performed
on LSRFortessa flow cytometer (BD Biosciences) and analyzed
with FlowJo software.

Quantitative real-time RT-PCR
Real-time RT-PCR was performed using the Maxima SYBR Green
Supermix (Thermo Scientific, USA) and CFX96 Real-Time System
(Bio-Rad, USA). The expression levels of studied genes were
normalized to that of the human GAPDH, Ct values, and relative
expression was determined by CFX Manager 3.1 software (Bio-Rad,
USA). Primer sequences are presented in Table S1. All PCR
measurements were performed two independent times each in
triplicate.

Neuroblastoma tumor biosamples
For this study, we used 60 experimental formalin-fixed, paraffin-
embedded NB tissue samples with tumor cell content exceeding
70%, obtained from 60 patients treated at the D. Rogachev Center
of Pediatric Hematology, Oncology and Immunology (CPHOI),
Moscow. For all the biosamples, informed written consents to
participate in this study were collected from the patient’s
representatives. The consent procedure and the design of the
study were approved by the ethical committees of the CPHOI and
of the Engelhardt Institute of Molecular Biology. Tumors were
evaluated by a pathologist to confirm the diagnosis and estimate
the content of tumor cells. All patients were treated according to
NB2004 protocol. “No response”, relapses and partial response to
the therapy outcomes were considered as poor response, and
others were considered as good response outcomes. The response
was determined based on tumor progression after each round of
chemotherapy. All patients were monitored for at least 1 year; the
median observation time was 817 days. Transcriptomic data for 41
patients were previously published and deposited to GEO with

Fig. 6 Analysis of synergistic action of anticancer drugs and ulixertinib on NB cell survival. a NB cell viability after treatment with imatinib
(Imat), dasatinib (Das), or vincristine (Vin) in combination with ulixertinib (Ulix) for 72 h. For each ulixertinib concentration used in
combination with other drugs, cell viability was normalized to viability of cells treated only with ulixertinib. Drug concentrations are shown on
a logarithmic scale. DMSO was used for a control treatment. Two cell lines with the highest synergies are shown for each drug, additional
graphs are provided in Fig. S13. b Heatmap showing ulixertinib induced toxicity when used in concentrations 100 and 250 nM without the
addition of other drugs. c Heatmap for imatinib (IM), dasatinib (DAS), and vincristine (VIN) IC50 decrease when drugs were used in
combination with 250 nM ulixertinib compared to control treatment with DMSO. Exact values are provided in Table S10. d Heatmaps show
drugs synergy as calculated by the Bliss method using SynergyFinder2.0 for cell lines with the highest scores for each drug. Dot plot shows
synergy scores for each drug combination with ulixertinib and each cell line. Mean synergy values for each drug and SD are shown. Synergy
scores were calculated using SynergyFinder2.0 [47]. e Schematic representation of ERK-dependent NB cell adaptation to multikinase
inhibitors.
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accession number GSE96629 [28], we updated clinical information
for these data and provide additional 19 tumor samples using the
same accession number GSE96629.

Identification of differentially expressed genes and
calculation of molecular pathway activation level
Synthesis of microarrays, library preparation, and hybridization
was performed as described previously [28]. Gene expression data
was obtained by using customized microarray platform, covering
3706 human gene transcripts involved in carcinogenesis. Gene
expression data were normalized using quantile normalization
[48]. Differential gene expression analysis was performed in two
ways: (1) responding patients (43 samples) vs. non-responding
patients (17 samples) and (2) metastatic patients (30 samples) vs.
patients without metastasis (30 samples). Significance of gene
expression difference was assessed using two-sided t test with
a p value threshold of 0.05. Based on normalized gene expression
values of these DEGs we calculated pathway activation levels for
380 molecular pathways extracted from Pathway Central database
(https://geneglobe.qiagen.com/ru/explore/). For each molecular
pathway we calculated pathway activation level using previously
described formula [29]. For each molecular pathway we calculated
pathway activation level using the following formula [29]:

PALp ¼
X

NIInp ´ ARRnp ´ log CNRn
X

NIInp ´ jARRnjn=n

where PALp—molecular pathway p activation level; CNRn (case-
to-normal ratio)—ratio of the protein-encoding gene n product
concentrations in the test sample and in the norms (average value
in the control group); NIInp—index of gene product n assignment
to the pathway p, assuming the values equal to 1 for gene
products included in the pathway and equal to 0 for gene
products not included in the pathway; discrete value ARRnp
(activator/repressor role) is deposited into the molecular pathway
base and determined for a gene n in the pathway p as follows:
ARRnp= {−1;protein n is a signal repressor in a pathway p− 0.5;
protein n is more likely a signal repressor in a pathway p0; the role
of a protein n in a pathway p is either ambivalent or neutral 0.5;
protein n is a signal activator in a pathway p1; protein n is a signal
activator in a pathway p.
For each pathway we then performed non-paired t test in order

to estimate differential activation of this pathway between: (1)
responding vs. non-responding patients and (2) metastatic vs.
non-metastatic patients. We adjusted the calculated p values for
multiple hypotheses testing using FDR method and set the
threshold 0.05. Heatmap for PAL visualization was created using
ClustVis web tool (https://biit.cs.ut.ee/clustvis/) [49].

UMAP and cluster DEGs
Initially we selected nine datasets from R2: Genomics analysis and
visualization platform with available overall patient survival data
(Table S1). For each dataset each gene expression data was
normalized as fold change from the mean expression of this gene
in a dataset. Four datasets were removed: TARGET due strong
clustering based on dataset origin and Oberthuer [50] having
significantly lower gene representation than other datasets, SEQC
[51] and Cangelosi [27] due to having same patient samples as
other datasets (Kocak for SEQC, Kocak, TARGET, SEQC, and
Versteeg for Cangelosi). We used gene expression data for 1226
NB tumors from five datasets: Kocak, NRC, Versteeg, Maris, and
Westermann [18, 20, 22, 23, 52] (Table S1) and a set of 168 growth
factor-related genes present in all datasets (Table S2). Tumor
clustering was performed by UMAP dimension reduction [53] and
HDBSCAN density-based hierarchical clustering [54] algorithms
using following Python libraries: https://github.com/lmcinnes/
umap and https://github.com/scikit-learn-contrib/hdbscan. We
used the following parameters for UMAP: n_neighbors= 50,
min_dist= 0, and correlation metric; and for HDBSCAN:

min_samples= 50, min_cluster_size= 100. To identify tumor
clusters we employed density-based hierarchical clustering using
HDBSCAN. 37 outliner samples were removed from the analysis.
Differentially expressed genes for tumors in clusters against all
over tumors were identified by multiple Mann–Whitney tests with
FDR correction using SciPy (https://github.com/scipy/) and stats-
models (https://www.statsmodels.org/) Python libraries.
To identify which cluster a particular cell line represent we

calculated scores for each cluster based on expression of
differential genes in a particular cell line. We normalized
gene expression data for 26 NB cell lines from Russel dataset
(Table S1) in the same way as for NB tumors. Then we used
gene expression data for SH-SY5Y, SK-N-BE, LAN-1, SK-N-AS,
SK-N-SH, and Kelly cells to calculate scores based on the
following formula:

S ¼
X

i

log2 expið Þ � ci

S—cluster score for a cell line, expi—expression of i differential
gene for a cell line, ci—coefficient, which equals 1, if this gene is
upregulated in a cluster, −1 if is downregulated.
Cell lines were assigned to a cluster with the highest score.

Creation of survival prediction model
For training and testing our prediction model we selected the
integrated and batch-controlled dataset, which contains survi-
val and gene expression data for 786 NB tumors [27]. Dataset
was normalized in the same way as described for UMAP. This
dataset was divided into 153 MYCN amplified and 629 MYCN
non-amplified tumors, four samples were excluded due to
unknown MYCN status. Each group was randomly divided into
train (70%) and test (30%) datasets. For the first training round
we selected 147 genes which are differentially expressed in
clusters 1–3 for MYCN amplified or MYCN non-amplified tumors.
To create quantitative model for survival prediction based on
gene expression we used logistic regression with elastic net
regularization:

p zð Þ ¼ 1
1 þ e�z

z ¼ yo þ
X

i

ωi � expi

ω̂ ¼ min
ω

z � Xωk k2 þ α � l1 � ωk k1 þ α � 1 � l1ð Þ
2

� ωk k2
� �

Where p(z)—survival probability function, expi—expression of
gene i, ωi—weight of gene i, y0—intercept, ω̂—weights
estimator, X—expression matrix, ω—weights matrix, α, and
l1—elastic net penalty parameters.
Optimal logistic regression and elastic net regularization

parameters were selected by fivefold cross validation, and then
gene weights in the model were calculated. Parameter optimiza-
tion and model calculation were performed separately for MYCN
amplified and non-amplified tumors. For the second training
round for each model we selected from 10 to 50% genes based on
highest absolute weight values. Second round training was
performed in the same manner as the first round. Optimal
amount of genes for the second model was determined by F1
model parameter for test datasets. Final model computes survival
probability using parameters for MYCN amplified or non-amplified
tumors depending on tumor MYCN status. If status is unknown
than MYCN non-amplified parameters are used. Before application
of prediction model to other datasets they were initially normal-
ized in the same way. Logistic regression was performed in Python
3.8 using scikit-learn library.
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Gene set prognostic scoring (GPScore) and multidimensional
scaling
We used GSEA v.4.03 (http://software.broadinstitute.org/gsea/
downloads.jsp) to identify enriched gene sets associated with
gene expression in NB patients. Enrichment results satisfying a
nominal p value <0.05 with a false discovery rate (FDR) < 0.25 were
considered statistically significant. Top 100 enriched GO gene sets
(based on higher normalized enrichment score) were selected
from GSEA for EPOR and KIT. For multidimensional scaling of
enriched GO gene sets, we used a web interface REVIGO [55].
SimRel score for depth of GO gene annotation was used for
multidimensional scaling and the obtained results were then
plotted in Cytoscape software [56]. Gene set prognostic score was
calculated according to the following formula:

GPScore ¼ Nu

Nu þ Nf

where Nu—a number of genes in a set those high expression is
associated with unfavorable prognosis for NB patients; Nf—a
number of genes in a set that high expression is associated with
favorable outcome. Versteeg (n= 88) (GSE16476), NRC (n= 283)
(GSE85047), and Kocak (n= 476) (GSE45547) datasets were used
for estimation of gene expression correlation with prognosis, since
these datasets have available survival data, similar tumor stage
and types distribution, and gene presentation. Kaplan–Meier
nonparametric estimator from R2: Genomics analysis and visua-
lization platform (http://r2.amc.nl) was used to determine associa-
tion of high gene expression with overall survival. Only genes that
have statistically significant correlation (p < 0.05 after Bonferroni
correction) were considered as associated with prognosis. 20
random gene sets (from 50 to 1000 genes) were analyzed to
determine baseline prognostic score values for each dataset.
These values were used to identify gene sets with prognostic
scores that differ from baseline scores in all three datasets. For
each gene set prognostic scores for three dataset were compared
with mean prognostic scores for 20 random gene sets using two-
sided t test. Corrections for multiple comparisons were performed
using false discovery rate (FDR), with q values < 0.01 considered as
statistically significant. Circos plots were created using Circos
software (http://circos.ca).

Mutation analysis and drug selection
To analyze recurrent mutation in NB patients and cell lines
frequencies we used TARGET dataset [5] and CCLE database [32]
(Table S1). Silent mutations were excluded from the analysis.
Mutations frequency (rate) was calculated as a number of patients
or cell line with mutated gene divided by a total number of
patients or cell lines present in a dataset. To identify drugs which
may directly target one or more selected proteins we used DSigDB
database and an algorithm which allows finding drugs by their
potential targets [33].

ERK-KTR quantification
For nuclear segmentation cells were incubated with 500 ng/ml
Hoechst-33342 for 30 min before imaging. In experiments with
growth factors cells were starved in medium without serum for at
least 6 h before addition of growth factors. Each experiment was
repeated at least two times, two microscopic fields with
appropriate densities were chosen for imaging for each well.
Cytoplasm to nucleus ratios (C/N ratio) of mClover intensity were
calculated for each cell. Illumination correction, segmentation, and
object intensity calculations were performed with CellProfiler [57].
Median intensities of mClover fluorescence in cytoplasm and
nucleus were quantified and used to calculate cytoplasm to
nucleus (C/N) ratios for each cell. C/N ratios were normalized:
1 represents maximum observed ERK activity in individual cell and
0—minimal ERK activity. All images were obtained by Leica DMI8

automated microscope and EVOS FL using ×10 magnification
lenses. Data processing was performed in Python and GraphPad
Prism 9. Violin plot for C/N ratios were made using the
“superplots” concept for visualization of cell-to-cell and sample-
to-sample variance [58, 59].

Statistical analysis
All the data are expressed as mean ± SD from at least three
individual experiments, unless stated otherwise in the text.
Statistical significances of differences observed in cell viability
experiments were determined by Mann–Whitney nonparametric
test. Statistical significances for real-time PCR experiments were
determined by unpaired two-sided Student t test. Kaplan–Meier
estimation was performed using R2: Genomics analysis and
visualization platform. Statistical calculations were performed in
Python 3.7 and GraphPad Prism 9 software.

CODE AVAILABILITY
The source codes used in this study are available at GitHub https://github.com/
CancerCellBiology/Lebedev-et-al-NB-EPO-.
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